Смекни!
smekni.com

Исследование зависимости между объемом производства, капитальными вложениями и выполнением норм (стр. 1 из 6)

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В.Г.ШУХОВА

Кафедра Экономики и Организации производства

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

«ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

Студентка: гр.ЭКд-21В

Н.В. Гребенникова

Руководитель: к.т.н., доц.

О.В.Доможирова

Белгород 2009


ЧАСТЬ 1

Постановка задачи

Для производства двух видов продукции А и Б используются три типа ресурсов. Нормы затрат ресурсов на производство единицы продукции каждого вида, цена единицы продукции каждого вида, а также запасы ресурсов, которые могут быть использованы предприятием, приведены в табл. 2.2.

Таблица 2.2

Типы ресурсов Нормы затрат ресурсов на единицу продукции Запасы ресурсов
А Б
Электроэнергия 1 7 24
Сырье 2 2 24
Оборудование 9 2 16
Цена ед. продукции 15 20
Прибыль ед продукц 3 9

Требуется:

I. Cформулировать экономико-математическую модель задачи в виде ОЗЛП.

II. Привести ОЗЛП к канонической форме.

III. Сформулировать экономико-математическую модель задачи двойственной к исходной.

IV. Построить многогранник решений (область допустимых решений) и найти оптимальную производственную программу путем перебора его вершин и геометрическим способом.

V. Решить задачу с помощью симплекс-таблиц.

Решение:

I. Оптимизационная модель задачи запишется следующим образом

а) целевая функция

б) ограничения:

в) условия неотрицательности переменных х1≥0 ; х2≥0.

II. Приведем ОЗЛП к канонической форме. Для этого введем дополнительные переменные x3, x4 и x5.

а) целевая функция

б) ограничения:

в) условия неотрицательности переменных

III. Сформулируем экономико-математическую модель задачи двойственную к исходной. Матрица В условий прямой задачи и матрица В’ – транспонированная матрица В – имеют следующий вид:

1 7 24 1 2 9 3
B= 2 2 24 B’= 7 2 2 9
9 2 16 24 24 16 Zmin
3 9 Fmax

В двойственной задаче нужно найти минимум функции

Z = 24y1 + 24y2 +16y3, при ограничениях


Систему ограничений-неравенств двойственной задачи обратим в систему уравнений:

Компоненты у1, у2, у3 оптимального решения двойственной задачи оценивают добавочные переменные х3, х4, х5 прямой задачи.

1) х1+7х2≥24 (0;3,43) (24;0)

2) 2х1+2х2≥24 (0;12) (12;0)

3) 9х1+2х2≥16 (0:8) (1,78;0)

Однако нам необходимо найти такую точку, в которой достигался бы max целевой функции.

Оптимальную производственную программу можно найти двумя способами:

1) путем перебора его вершин

Находим координаты вершин многоугольника ABCDE и подставляя в целевую функцию находим ее значение.

А: А (0; 0) Z(A) =3×0+9×0=0

В: В (0; 3,43) Z(B) = 3×0+9×3,43=30,87

D: D (1,78; 0) Z(B) = 3×1,78+9×8=5,38

С: – это пересечение первого и второго уравнений

;
;216 -63x2+2x2=16; x2=1,04.

С (1,04; 3,28) Z(C) = 3×1,04+9×3,28=32,64

Находим max значение целевой функции. Оно находится в точке

С (1,04; 3,28). Таким образом max прибыль составит 32,68у.д.е. при выпуске продукта Р в количестве 1,04 у.е. и R – 3,28 у.е.

2) геометрическим способом

Целевая функция геометрически изображается с помощью прямой уровня, т.е. прямой на которой Z=3X1+9X2 – принимает постоянное значение.

Если С – произвольная const, то уравнение прямой имеет вид

3X1+9X2

При изменении const С получаем различные прямые, параллельные друг другу. При увеличении С прямая уровня перемещается в направлении наискорейшего возрастания функции Z, т.е. в направлении ее градиента. Вектор градиента

Точкой min Z будет точка первого касания линии уровня с допустимым многоугольником. Точкой max – точка отрыва линии уровня от допустимого многоугольника. Эти точки чаще всего совпадают с некоторыми вершинами допустимого многоугольника, хотя их может быть и бесчисленное множество, если линия уровня Z параллельна одной из сторон допустимого многоугольника. Это точка С (1,04; 3,28) Z=32,68 у.д.е.

Решим задачу с помощью симплекс-таблиц.

Пусть необходимо найти оптимальный план производства двух видов продукции P и R.

1. Построим оптимизационную модель:

F(X)=3X1+9X2→max

2. Преобразуем задачу в приведенную каноническую форму. Для этого введем дополнительные переменные X3, X4 и X5.

F(X)=3X1+9X2→max

Построим исходную симплекс-таблицу и найдем начальное базисное решение.

Баз. пер. Своб. член Х1 Х2 Х3 Х4 Х5
Х3 24 1 7 1 0 0
Х4 24 2 2 0 1 0
Х5 16 9 2 0 0 1
F 0 – 3 – 9 0 0 0

Базисное решение (0; 0; 24;24; 16). F=0.

Находим генеральный столбец и генеральную строку

. Генеральный элемент 7

Баз. пер.
Своб. член Х1 Х2 Х3 Х4 Х5
Х3 3,23 1 0 0 0
Х2 17,14 0 0 1 0
Х5 9,14 0 0 0 1
F 30,86 0 0 0 0

Базисное решение (0; 8; 4; 0; 10). F=40.

2,22222. Генеральный элемент 1,8.
Баз. пер. Своб. член Х1 Х2 Х3 Х4 Х5
Х1 2,22 1 0 0,55 1,11 0
Х2 7,56 0 1 -0,11 1,77 0
Х5 2,74 0 0 1,82 5,63 1
F 46,65 0 0 -1,665 -13,3 0

Базисное решение (2,22; 7,56; 0; 0; 2,74). F=46,65.

Эта таблица является последней, по ней читаем ответ задачи. Оптимальным будет решение (2,22; 7,56; 0; 0; 2,74), при котором Fmax =46,65, т.е. для получения наибольшей прибыли, равной 46,65 денежных единиц, предприятие должно выпустить 2,22 единиц продукции вида P и 7,56 единиц продукции вида R, при этом ресурсы A и B будут использованы полностью, а 2,74 единиц ресурса С останутся неизрасходованными.


ЧАСТЬ 2

Постановка задачи

Исследовать зависимость между объемом производства, капитальными вложениями и выполнением норм выработки. Для построения модели собраны данные по исследуемым переменным на 12-ти предприятиях объединения.

Предполагая, что зависимость между переменными имеет линейный характер, анализ провести в следующей последовательности:

а) построить уравнение регрессии

;

б) построить уравнение регрессии

;

в) исследовать модели

,
и сделать соответствующие выводы;

г) построить уравнение регрессии

и выполнить исследование множественной модели в полном объеме (см.п.3.2).

Решение:

А). Строим уравнение регрессии

;

1. Экономическая теория и расположение точек на диаграмме рассеяния (Приложение 2) позволяют предположить линейную связь между переменными

СМ. ПРИЛОЖЕНИЕ 2. Диаграмма рассеяния, отражающая зависимость производства от капиталовложений.