Смекни!
smekni.com

Место аналогии в обучении математике в школе (стр. 6 из 7)

На последующих занятиях можно провести обобщение плоского случая на пространственный с помощью метода координат.

Обращаясь вновь к рассматриваемому выше треугольнику, можно ввести координаты так, что точка А1 будет иметь координаты (0; 0), точка А1 (4;0), точка А3 (0;4), тогда координаты остальных точек: М1 (2; 2), М2 (0; 2), М3 (2; 0), Ц (4/3;43). Выведем уравнение окружности, проходящей через точки А1, М2 и М3 (для определения окружности достаточно трех точек) в виде (x-a)2+(y-b)2=R2. Тогда:

(0-a)2+(0-b)2=R2Ûa2+b2=R2,

(0-a)2+(2-b)2=R2Ûa2+4-4b+b2=R2,

(2-a)2+(0-b)2=R2Û4-4a+a2+b2=R2.

Из этой системы трех уравнений получаем a=1, b=1, R=Ö2 и уравнение окружности: (x-1)2+(y-1)2=2. Непосредственной подстановкой координат точки М1 в полученное уравнение убеждаемся, что точка М1 принадлежит окружности.

Аналогично для пространства. Введем пространственные координаты так, чтобы точка А1 имела координаты (0; 0; 0), точка А2 (6; 0; 0), точка А3 (0; 0; 6), точка А4 (0; 6; 0). Тогда координаты остальных точек - М1 (2; 2; 2), М2 (0; 2; 2), М3 (2; 2; 0), М4 (2; 0; 2), Ц (3/2; 3/2; 3/2). Выведем уравнение окружности, походящей через точки А1, М1, М2 и М3 (для определения сферы нужно уже четыре точки). Уравнение сферы будет иметь вид (x-1)2+(y-1)2+(z-1)2=3.Принадлежность остальных точек этой сферы можно легко проверить простой подстановкой координат в уравнение.


ПРИМЕНЕНИЕ АНАЛОГИИ ПРИ РЕШЕНИИ ЗАДАЧ

Не менее полезно воспитывать у школьников привычку сознательно привлекать аналогию при поиске способов решения предложенной им трудной задачи. В этом случае можно рекомендовать им следующий план работы над задачей.

1. Подобрать задачу, аналогичную данной, т. е. такую, у которой имелись бы, по сравнению с данной, сходные условия и сходное заключение; вспомогательная задача должна быть проще данной или такой, решение которой известно.

2. Решить вспомогательную задачу; затем провести аналогичные рассуждения при решении данной задачи.

Например, к аналогии с планиметрическими задачами полезно обращаться при решении стереометрических задач.

При этом полезно, чтобы школьник пытался (если это возможно) самостоятельно сформулировать и решить аналогичную планиметрическую задачу. Рассмотрим, например, задачу: «На сколько частей могут разделить пространство четыре произвольно расположенные плоскости?»

Четыре плоскости определяют тетраэдр. Эта фигура напоминает нам 3 пересекающиеся прямые на плоскости.

Естественно возникает вспомогательная задача, аналогичная данной: «На сколько частей могут разделить плоскость 3 произвольные прямые?».

Решим сначала вспомогательную задачу (рис.11). В общем случае три прямые могут разделить плоскость на 7 частей, одна из них ограничена (внутренняя область треугольника), а другие, неограниченные части плоскости (таких 6) имеют с внутренней областью общую границу по стороне треугольника или по продолжению его сторон. В этом случае плоскость оказывается разделенной всего на 1+3+3=7 частей.

Теперь приступим к решению основной задачи (рис.12).

В общем случае, 4 плоскости могут разделить пространство на следующие части: одна из них ограничена – внутренняя область тетраэдра; неограниченные части пространства имеют общую границу с внутренней областью по грани тетраэдра (4 части), или по его ребру (6 частей), или по плоскостям, проходящим через его вершины (еще 4 части).

В этом случае пространство оказывается разделенным всего на 1+4+6+4=15 частей.

Чтобы школьники могли лучше усвоить этот прием решения задач, целесообразно время от времени предлагать им задачи, при решении которых метод аналогии оказывается полезным. При этом поначалу полезно предлагать учащемся не одну, а две (или более) взаимосвязанные по содержанию задачи, формулируя условие каждой из них одновременно. Например:

a) выразите радиус окружности, вписанной в равносторонний треугольник, через его высоты;

b) выразите радиус шара, вписанного в тетраэдр, через высоты этого тетраэдра.


ОШИБКИ, СВЯЗАННЫЕ С ПРИМЕНЕНИЕМ АНАЛОГИИ

Наряду с полезной эвристической ролью, которую играют в процессе обучения умозаключения по аналогии, они же могут приводить отдельных учащихся, которые не усвоили или формально, неосмысленно усвоили учебный материал, к грубым ошибкам. Например:

от (a + b)c = ac + bc к (a + b)2= a2 + b2;

от ab/ac = b/c к a + b/ac = b/c и т. п.

В подобных случаях учащиеся пытаются заменить аналогией отсутствующие у них знания, тогда как аналогия должна опираться на знание изученного материала, помогать сознательному усвоению и правильному применению этих знаний, развитию самоконтроля. Необходимо требовать от учащихся постоянно обосновывать выполняемые математические операции ссылками на изученный теоретический материал, чтобы добиться сознательного и прочного усвоения его. При решении упражнений необходимо руководствоваться принципом: «сначала правило, потом действие; без правила нет действия!». Да и в процессе преподавания надо не только подчеркивать истинные аналогии, но и отмечать ложные, разрушать их с целью предупреждения возможных ошибок. Следует выяснить с учащимися, где данное правило применяется, а где и почему нельзя применять. Многие из грубых ошибок учащихся связаны с неправомерным распространением распределительного свойства на всевозможные операции.

Учителю математики полезно знать о трех типичных ошибках, которые порождены неявным применением аналогии. Такие «вредные» (ложные) аналогии часто возникают у школьников стихийно; и сами школьники и учитель не всегда отдает себе отчет в происхождении этих ошибок (а значит, и в возможностях их исправления).

Ограничимся несколькими примерами.

1.Наличие общности в свойствах сложения и умножения чисел иногда приводит к возникновению у школьников ошибочной аналогии о сходстве этих действий и в других свойствах. Так, например, при решении упражнения вида a+b/c+b по ложной аналогии с сокращением на общий множитель учащиеся «сокращают» это выражение на слагаемое: a+b/c+b=a/c.

2.Нередкая ошибка вида Öа2+b2=a+b также является результатом ложной аналогии со способом извлечения квадратного корня из произведения Öа2b2=½ab½. К тому же виду ошибок принадлежит и весьма распространенная ошибка logc(a+b)=?logca+ logcb, порожденная ложной аналогией с верным равенством logcab= logca + logcb, где a>0, b>0.

3.Очень распространена ошибка, приводимая психологом Н. А. Менчинской: «Учащийся при решении примера 96 : 16 = 10 допускает ошибку, в основе которой лежит ошибочное умозаключение по аналогии 96 : 16 = 10 (?), потому что 90 : 10 = 9 и 6 : 6 = 1; 9 + 1 = 10. В приведенном примере мы имеем перенесение в операцию деления приемов, употреблявшихся при сложении и вычитании чисел. Это ошибочное умозаключение возникло из привычного оперирования в отдельности десятками и единицами при сложении и вычитании чисел и делении их на однозначное число».

4.Замечая частые аналогии между многими понятиями и предложениями планиметрии и стереометрии, учащиеся часто переносят их в ситуации, где они оказываются ложными. Этим, пожалуй, объясняются весьма распространенные ошибочные ответы учащихся 9 – 10 классов: «Через данную на прямой точку в пространстве можно провести только один перпендикуляр к этой прямой», или «Две прямые в пространстве, перпендикулярные к одной и той же третьей прямой, всегда параллельны между собой», или «Две плоскости, перпендикулярные к одной и той же третьей плоскости, всегда параллельны между собой» и т. п.