Смекни!
smekni.com

Теория экономического прогнозирования (стр. 8 из 20)

Внутригодовая цикличность носит часто сезонный характер.

При изучении сезонных процессов часто применяется спектральный анализ, который позволяет прогнозировать тенденции, динамика которых содержит колебательные или гармонические составляющие [31].

Сезонные волны можно описать гармоникой ряда Фурье:

ŷ=α0+∑mkk coskt + bk sinkt), (2.9)

где t- номер гармоники ряда Фурье;

ао и аk, bkопределяют по МНК;

k - число гармоник (1,2,...)

В условиях переходной экономики возрастает значимость прогнози­рования жизненного цикла товара (ЖЦТ). Автором концепции ЖЦТ счи­тается известный маркетолог Теодор Левитт, предложивший ее в 1965г.

Суть прогноза заключается в том, чтобы определить, как надолго и насколько интенсивно будет сохраняться спрос на данный товар. Прогноз ЖЦТ - многоплановый процесс, важной составляющей которого является подбор для каждого этапа соответствующей трендовой модели, отражаю­щей не только рост, стабилизацию или спад, но и степень ускорения или замедления этих процессов. Такой прогноз является составным элементом прогнозирования покупательного спроса и рыночной конъюнктуры.

Жизненный цикл товара можно графически смоделировать в виде сложной кривой (рис. 2.3).

Математически смоделировать весь жизненный цикл товара практи­чески невозможно, пришлось бы использовать сложную многочленную функцию, которую трудно интерпретировать. Целесообразно использовать метод линейно-кусочных агрегатов, то есть моделировать и прогнозиро­вать каждый этап ЖЦТ с помощью трендовой и (или) многофакторной мо­дели, отражающей закономерности каждого этапа.

Отмеченные ранее методы механического выравнивания могут так­же выступать в роли самостоятельных методов статистического прогнози­рования.

Прогнозирование на основе адаптивных скользящих средних произ­водится с использованием следующих формул:

Mi = Mi-1 + (yi - yi-m) / (m), (2.10)

где Mi – скользящая средняя, отнесенная к концу интервала.

Mi = ŷt = (∑t+pi=1 yi) / (m). (2.11)

Первый член уравнения (2.10) – Мi-1 несет «груз прошлого» - инер­цию развития, а второй адаптирует среднюю к новым условиям. Таким об­разом, средняя как бы обновляется, «впитывая» информацию о фактически реализуемом процессе (степень обновления определяется весом 1/т).

Экспоненциальные средние. Влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя. Для этой цели используют экспоненциальное сглаживание, применяемое в краткосрочном прогнозировании (идея Н.Винера):

Qt = α · yt + (1+α) · Qt-1, (2.12)

где Qt - экспоненциальная средняя на момент t;

а - коэффициент, характеризующий вес текущего наблюдения (параметр сглаживания).

При расчете по формуле (2.12) необходимо выбрать Qt-1. Часто

Qt-1 принимают равным yt.

Применение метода успешно, когда ряд имеет достаточно большое число уровней. Чем меньше а, тем больше роль «фильтра», поглощающего колебания 0< а <1. Практически диапазон а ограничивается величинами 0,1; 0,3. Хорошие результаты дает а = 0,1. При выборе а следует иметь в виду, что для повышения скорости реакции на изменение процесса разви­тия необходимо повысить а, однако это уменьшает «фильтрационные» возможности средней.

Специфика экономических процессов состоит в том, что они обла­дают взаимосвязью и инерционностью (см. п. 1.3). Последнее означает, что значение фактического показателя в момент времени зависит определенным образом от состояния этого показателя в предыдущих периодах, т.е. значения прогнозируемого показателя должны рассматриваться как фак­торные признаки. Уравнение авторегрессионной зависимости в общем имеет вид:

ŷt = α0 + α1 · yt-1 + α2 · yt-2 +...+ αk · yt-k, (2.13)

где ŷt – прогнозируемые значения показателя в момент времени t;

yt-1 – значения показателя y в момент времени (t-i);

α1 – i-тый коэффициент регрессии.

Часто прогнозируемый показатель зависит не только от предшествующих состояний, но и от других факторов x. Тогда говорят о смешанной авторегрессии:

ŷt = α1 · yt-1 + α2 · yt-2 +...+ αk · yt-k + b1 · x1 + b2 · x2 +...+ bm · xm =

= ∑ki=1 αi · yt-I + ∑mj=1 bj · xj. (2.14)

Оценки αi и bj находят по МНК.

Все приведенные выше модели позволяют получить точечные оценки. Для определения наиболее вероятных интервалов варьирования прогнозных показателей необходимо найти доверительные оценки. В общем виде расчет доверительного интервала может быть представлен следующим образом:

ŷt+a ± ta Sŷ, (2.15)

где ŷt+a - точечный прогноз;

Sŷ – средняя квадратическая ошибка прогноза;

tat-статистика Стьюдента;

α – период упреждения прогноза.

В общем виде для полиномов различных степеней:


t+2 = Sy √T`α (T` · T)-1 · Tα, (2.16)

где (T` · T) – матрица системы нормальных уравнений;

Sy – среднее квадратическое отклонение фактических значений от расчётных.

В частности, для линейного тренда:


Sŷ = Sy √1 + 1 : n + (tα - t)2 : ∑(t')2, (2.17)

Где tα – заданное на период упреждения значение переменной t,

t – среднее значение t, т.е. значение порядкового номера уровня, стоящего в середине ряда;

∑(t')2 – сумма квадратов отклонений значений независимой переменной от их средней.

Важно иметь в виду, что экстраполяция в рядах динамики носит приближенный и условный характер. Поэтому применение методов экст­раполяции не должно становиться самоцелью, а при разработке социально-экономических прогнозов должна привлекаться дополнительная информа­ция, на основе которой в полученные методом экстраполяции количест­венные оценки вносятся соответствующие коррективы.

Экономико-математическое моделирование

Методы экономико-математического моделирования применяются преимущественно в" среднесрочном, а также в долгосрочном прогнозиро­вании.

В данной группе методов можно выделить корреляционно-регрессионное моделирование, которое используется для объектов, имею­щих сложную многофакторную природу (объем инвестиций, затраты, при­быль, объемы продаж и т.п.). Для осуществления регрессионного модели­рования необходимо [30]:

- наличие ежегодных данных по исследуемым показателям;

- наличие одноразовых прогнозов, то есть таких, которые не коррек­тируются с поступлением новых данных.

Наиболее разработанной в теории прогнозирования является мето­дология так называемой парной корреляции, рассматривающей влияние факторного признака х на результативный у. Методы оценки параметров уравнения регрессии аналогичны приемам при экстраполяции (т.к. фактор времени ? можно рассматривать как частный случай параметра х). На прак­тике же гораздо чаще приходится исследовать зависимость результативно­го признака от нескольких факторных. В этом случае статистическая мо­дель является многофакторной. Например, линейная регрессия с т незави­симыми переменными имеет вид:

ŷi = α0 · x0 + α1 · x1 + α2 · x2 +...+ αm · xm. (2.18)

Оценки параметров находят по МНК.

Отбор факторов для построения многофакторных моделей произво­дится на основе качественного и количественного анализа социально-экономических явлений с использованием статистических и математиче­ских критериев.

Общепринятым является трехстадийный отбор факторов:

1. На первой стадии осуществляется априорный анализ, и на факто­ры, включаемые в состав модели, не накладываются ограничения.

2. Нг второй стадии производится оценка и отсев части факторов. Это достигается путем анализа парных коэффициентов корреляции и оценкой их значимости. Для этого составляется матрица парных коэффи­циентов корреляции (табл. 2.3).

Анализ таблицы ведется с использованием следующих критериев:

ryi > rij ; ryj > rij ; rij > 0,8 , (2.19)

где rijпарные коэффициенты корреляции.

3. На заключительной стадии производят окончательный отбор фак­торов путем анализа значимости вектора оценок параметров различных вариантов уравнений множественной регрессии с использованием крите­рия Стьюдента:

tрасч > tk,a, (2.20)

где k - число степеней свободы,

а- уровень значимости.

В процессе анализа решается проблема мультиколлинеарности, ко­торая заключается в том, что между факторными признаками может суще­ствовать значительная линейная связь, что приводит к росту ошибок оце­нок параметров регрессии.

Таблица 2.3

Матрица парных коэффициентов корреляции множественной модели регрессии

У X1 Х2 xj xm
у 1 ryl rу2 ryj rут
X1 r 1 R12 rlj rml
Х2 r R2l 1 R2j r
X1 riy ril Ri2 1 rim
Хm rту rml Rm2 rmj 1

Приемы построения регрессионных и авторегрессионных моделей достаточно хорошо описаны в экономико-статистической литературе [11, 14, 24, 26, 30, 38, 39] и не являются предметом описания настоящего учебного пособия. Наличие прогрессивных информационных технологий по­зволяет достаточно оперативно рассчитывать параметры этих моделей. Во внутрипроизводственном прогнозировании используются: