Смекни!
smekni.com

Нахождение минимальных затрат при распределении товаров среди магазинов методами решения транспо (стр. 2 из 3)

Дано:

Склад №1=200 шт.

Склад №2=250шт.

Склад №3=200шт.

Требуется доставить штук:

Магазин "Терабайт"= 190шт.

Магазин "Лидер"= 100 шт.

Магазин "Эксперт" = 120 шт.

Магазин "Ока-сервис" =110 шт.

"Владимирский рынок" =130 шт.

Сетка тарифов:

28

27

18

27

24

18

26

27

32

21

27

33

23

31

34

Построим для данной задачи матрицу тарифов, по которой будет происходить поиск оптимального плана распределения товаров между магазинами. Для более удобного решения задачи обозначим магазины и товары переменными:

Магазины:

Магазин "Терабайт"= B1

Магазин "Лидер"= B2

Магазин "Эксперт" = B3

Магазин "Ока-сервис" = B4

"Владимирский рынок" = B5

Товары:

Склад №1= A1

Склад №2 = A2

Склад №3= A3

Тогда матрица будет выглядеть так:

B1

B2

B3

B4

B5

Запасы

A1

28

27

18

27

24

200

A2

18

26

27

32

21

250

A3

27

33

23

31

34

200

Потребности

190

100

120

110

130

Следуя данной модели можно найти опорный план и решение поставленной задачи.

2.2 Нахождение первоначального плана методом северо-западного угла

Используя построенную матрицу тарифов найдём оптимальный опорный план методом северо-западного угла.

B1

B2

B3

B4

B5

Запасы

A1

28

27

18

27

24

200

A2

18

26

27

32

21

250

A3

27

33

23

31

34

200

Потреб.

190

100

120

110

130


Проверим необходимое и достаточное условие разрешимости задачи.

Условие баланса соблюдается. Запасы равны потребностям. Построим опорный план транспортной задачи:

B1

B2

B3

B4

B5

Запасы

A1

28 [190]

27 [10]

18

27

24

200

A2

18

26 [90]

27 [120]

32 [40]

21

250

A3

27

33

23

31 [70]

34 [130]

200

Потреб.

190

100

120

110

130

Решение задачи методом северо-западного угла всегда начинается с левого, верхнего тарифа([A1;B1]). Полностью удовлетворяем потребность данного тарифа. Исключаем первый столбец. Дальше смотрим если запасы ещё остались, рассматриваем рядом стоящий тариф ([A2;B1]), если нет, то исключаем и первую верхнею строк. И рассматриваем следующий тариф по аналогичной схеме. В результате получен опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи. Подсчитаем число занятых клеток таблицы, их 7, а должно быть m + n - 1 = 7. Следовательно, опорный план является невырожденным.

Подсчитаем затраты на распределение товаров:

F=28*190+27*10+26*90+27*120+32*40+31*70+34*130=19040

Результат: Затраты на распределение товаров между магазинами найденные методом северо-западного угла составят 19040 рублей.


2.3 Нахождение первоначального плана методом наименьшей стоимости

Используя построенную матрицу тарифов, найдём оптимальный опорный план методом наименьшей стоимости.

B1

B2

B3

B4

B5

Запасы

A1

28

27

18

27

24

200

A2

18

26

27

32

21

250

A3

27

33

23

31

34

200

Потреб.

190

100

120

110

130

Проверим необходимое и достаточное условие разрешимости задачи.

Условие баланса соблюдается. Запасы равны потребностям. Построим опорный план транспортной задачи:

B1

B2

B3

B4

B5

Запасы

A1

28

27[10]

18[120]

27

24[70]

200

A2

18 [190]

26

27

32

21[60]

250

A3

27

33 [90]

23

31 [110]

34

200

Потреб.

190

100

120

110

130

Для решения задачи методом наименьшей стоимости сначала из все матрицы тарифов выбираем наименьший тариф ([A2;B1]). Полностью удовлетворяем его потребность. Исключаем из решения столбец в котором он находился. Ищем следующий минимальный тариф ([A2;B3]). Удовлетворяем его потребности. Исключаем из решения столбец в котором он находился. Дальше продолжаем до тех пор, пока все запасы не будут розданы.

В результате получен опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m + n - 1 = 7. Следовательно, опорный план является невырожденным.

Подсчитаем затраты на распределение товаров:

F=27*10+18*120+24*70+18*190+21*60+33*90+31*110=15170

Результат: Затраты на распределение товаров между магазинами найденные методом наименьшей стоимости составят 15170 рублей.

2.4 Метод потенциалов

Для решения транспортной задачи сначала надо найти опорный план методом северо-западного угла и методом наименьшей стоимости, и из них выбрать метод при котором затраты на распределения товаров минимальны.

Для данной задачи минимальным является метод наименьшей стоимости.

Опорный метод этого плана и будем использовать для решения задачи методом потенциалов:

B1

B2

B3

B4

B5

Запасы

A1

28

27[10]

18[120]

27

24[70]

200

A2

18[190]

26

27

32

21[60]

250

A3

27

33[90]

23

31[110]

34

200

Потреб.

190

100

120

110

130


Проверим оптимальность опорного плана. Найдем потенциалы ui, vi. по занятым клеткам таблицы, в которых ui + vi = cij