Неравенство
¹0 служит признаком центральной линии второго порядка.Если S(х0 , у0) — центр линии второго порядка, то в результате преобразования координат по формулам
(что соответствует переносу начала координат в центр линии) её уравнение примет вид
,
где А, В, С — те же, что в данном уравнении (1*), а
определяется формулой
В случае
¹ 0 имеет место также следующая формула:Где
.
Определитель D называется дискриминантом левой части общего уравнения второй степени.
6. Асимптоты и диаметры линий второго порядка.
Асимптоты.
(от греч. слов: α, συν, πίπτω) — несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между обеими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако, не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к ее оси. Эти прямые, о которых упоминает уже Архимед, были еще в древности названы А. и сохранили свое название и по настоящее время. Впоследствии Ньютон показал, что существуют криволинейные А. не только в кривых трансцендентных, но даже в алгебраических, начиная с 3 порядка последних. Действительно, ныне различают А. прямолинейные и криволинейные; но обыкновенно прямолинейной А. присваивают название Асимп., называя криволинейную — асимптотическою кривою. Основываясь на вышеприведенном определении, что прямолинейная А. есть касательная к кривой в точке, бесконечно удаленной от начала координат, легко найти уравнение А. данной кривой. В самом деле, пусть y = f(x) есть уравнение кривой линии; уравнение касательной ее в точке, определенной координатами х и у, будет, как известно, У— у = dy/dx(Х — х) или Y = (dy/dx)Х + у — x(dy/dx). Чтобы перейти от касательной к А., стоит сделать одно из следующих предположений: 1) x и y = ±∞, 2) х = ±∞, а у = конечному числу и 3) у = +∞, а х = конечному числу, так как этими предположениями мы выражаем, что точка касания находится на бесконечном расстоянии от начала координат. Так, для гиперболы, определяемой уравнением (x2/a2) — (y2/b2) = 1 находим Y = ±(b/a)∙[x/√(x2 — a2)]∙X ± [ab/√(x2 — a2)]. Полагая х = ∞, найдем ±(b/a) — [x//√(x2 — a2)] = ±(b/a)∙[1/√(1 — a2/ x2)] = ±(b/a), и ±[ab//√(x2 — a2)] = 0; следовательно, уравнение А. рассматриваемой гиперболы будет У = ±(b/a)Х или, что все равно, Y = +(b/a)X и Y = -(b/a)X; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет У А. = Х + В уравнение А., не параллельной оси у. Ордината у кривой, соответствующая абсциссе x, для весьма больших величин сей абсциссы будет очень мало разниться от ординаты У а-ты, так что можно ее принять у = Ах + В ± ε, подразумевая под ε количество, уничтожающееся вместе с 1/x. Итак, полагая x = ∞, найдем пред. (Y/X) = пред.
и пред. (у — Ах) = пред. (В ± ε) = В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить Y/X = q или y = xq и сыскать предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у — Ах = ν, или у = Ах + ν. Изменив х на у и наоборот и рассуждая так же, как и выше, найдем А., не параллельные оси х. Так, например, уравнение рассмотренной нами гиперболы через подстановку qx вместо у дает a2/x2 — q2x2/b2 = 1 или q2 = b2/a2 — b2/x2; полагая х = ∞, найдем q2 = b2/a2, или q = ±(b/a)A. Полагая в том же уравнении y = Ax + ν = +(b/a)x + ν, получим x2/a2 — [(±x(b/a) + ν)2/b2] = 1, или ν = ±(b/a)∙[√(x2 — a2) — x], где, полагая x = ∞, получим ν = 0 = B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, Y = +(b/a)X, что и требовалось доказать. Бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др. Чертежи I, II и III представляют (см.) примеры а-ты: линии KL и MN служат (черт. I) асимптотами нормальной равносторонней гиперболы, получающейся от пересечения поверхности конуса плоскостью, — пересекающимися в точке О, начала координат, под прямыми углами;
линии AF и AG (черт. II) изображают А. частей СВ и CED так называемой пересечной гиперболы.
Змиевидная гипербола DBE (черт. III) имеет асимптотой линию АС.
Диаметры.
В курсе аналитической геометрии доказывается, что середины параллельных хорд линии второго порядка лежат на одной прямой. Эта прямая называется диаметром линии второго порядка. Диаметр, делящий пополам какую-нибудь хорду (а значит, и все параллельные ей), называется сопряжённым этой хорде (и всем хордам, которые ей параллельны). Все диаметры эллипса и гиперболы проходят через центр.
Если эллипс задан уравнением
(6.1)то его диаметр, сопряжённый хордам с угловым коэффициентом k, определяется уравнением:
(6.2)Если гипербола задана уравнением
(6.3)то её диаметр, сопряжённый хордам с угловым коэффициентом k, определяется уравнением:
(6.4)Все диаметры параболы параллельны её оси.
Если парабола задана уравнением
y2 = 2px (6.5)
то её диаметр, сопряжённый хордам с угловым коэффициентом k, определяется уравнением
(6.6)Если один из двух диаметров эллипса или гиперболы делит пополам хорды, параллельные другому, то второй диаметр делит пополам хорды, параллельные первому. Такие два диаметра называются взаимно сопряжёнными.
Если k и k' — угловые коэффициенты двух взаимно сопряжённых диаметров эллипса (6.1), то
(6.7)Если k и k' — угловые коэффициенты двух взаимно сопряжённых диаметров гиперболы (6.3), то
(6.8)Соотношения (6.7) и (6.8) называются условиями сопряжённости диаметров соответственно для эллипса и для гиперболы. Диаметр линии второго порядка, перпендикулярный к сопряжённым хордам, называется главным.
7. Привидение уравнений линий второго порядка к простейшему.
Упрощение общего уравнения кривой второго порядка
Задача упрощения уравнения или состоит в том, чтобы в преобразованном уравнении были устранены:
1) член, содержащий произведение текущих координат,
2) члены, содержащие первые степени двух координат или, по крайней мере, одной из них.
В том случае, когда уравнение линии второго порядка содержит произведение текущих координат, упрощение его следует начинать с поворота осей без изменения начала координат и надлежащим выбором угла поворота добиться того, чтобы из преобразованного уравнения был устранен член, содержащий произведение текущих координат. Преобразование координат в этом случае будем вести по формулам
(7.1)Если после устранения из преобразованного уравнения члена с произведением текущих координат в нем останутся члены с первыми степенями текущих координат, то последующим параллельным переносом осей можно, как это было показано, привести уравнение к каноническому виду.
Координатную систему, полученную в результате поворота первоначальной системы координат, будем обозначать через x1Oy1, а систему координат, полученную от параллельного переноса координатной системы x1Oy1, - через x2O1y2 (см. рис. 7.1)