В математической статистике исходная исследуемая случайная величина называется генеральной совокупностью, а полученный из нее набор экспериментальных данных – выборочной совокупностью, или выборкой.
1. Число объектов (наблюдений) в совокупности, генеральной или выборочной, называется ее объемом; обозначается соответственно через Nи n. В данном случае N=100.
2. Числа ni, показывающие сколько раз встречаются варианты xiв ряде наблюдений, называются частотами, а отношение их к объему выборки – частостямиpi.
где
Проранжируем статистические данные. Для определения оптимального значения величины интервала в первом приближении можно воспользоваться формулой Стерджеса
Воспользовавшись (2) получим
В соответствии с (1) и (2) составим интервальный статический ряд:
Таблица 1
Итервальный статический ряд
Интервал | 69,768-70,509 | 70,509-71,25 | 71,25-71,991 | 71,991-72,732 | 72,732-73,473 | 73,473-74,214 | 74,214-74,955 | 74,955-75,696 | 75,696-76,437 |
Частота | 2 | 11 | 11 | 20 | 24 | 16 | 11 | 4 | 1 |
Частостьpi | 0,02 | 0,11 | 0,11 | 0,2 | 0,24 | 0,16 | 0,11 | 0,04 | 0,01 |
Рисунок 1. Диаграмма частоты в выбранных интервалах
3. Медианой
4. Размахом вариации называется число
где или
5. Выборочным средним
В случае интервального статистического ряда в качестве
6. Выборочной дисперсией Dвназывается среднее арифметическое квадратов отклонений значений выборки от выборочной средней, т.е.
7. Выборочное среднеквадратическое отклонение выборки определяется формулой:
8. Эмпирической (статистической) функцией распределения называется функция
где n– объем выборке, nx– число наблюдений, меньших х. Согласно (7) определим значения эмпирической функции распределения в выбранных интервалах.
График эмпирической функции распределения имеет вид.
Одной из важных задач математической статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по эмпирическому распределению, представляющему вариационный ряд.
Проверим при уровне значимости
Рисунок 2. График эмпирической функции распределения
Число наблюдений в крайних интервалах меньше 5, поэтому объединим их с соседними. Получим следующий ряд распределения ( n=100).
Интервалы | Частота k | Середина интервалаXcp |
69,768-71,25 | 13 | 70,694 |
71,25-71,991 | 11 | 71,62 |
71,991-72,732 | 20 | 72,362 |
72,732-73,473 | 24 | 73,102 |
73,473-74,214 | 16 | 73,844 |
74,214-74,955 | 11 | 74,584 |
74,955-76,437 | 5 | 75,377 |
Вычислим параметры, определяющие нормальный закон распределения.
Так как случайная величина имеет нормальное распределение, то для расчета вероятностей
Полученные результаты приведем в следующей таблице:
Xi, Xi+1 | 69,768-71,25 | 71,25-71,991 | 71,991-72,732 | 72,732-73,473 | 73,473-74,214 | 74,214-74,955 | 74,955-76,437 |
ni | 13 | 11 | 20 | 24 | 16 | 11 | 5 |
n`=n∙pi | 10,2 | 14,5 | 20,92 | 22,46 | 17,69 | 9,03 | 5,2 |
Определим критерий Пирсона:
Находим число степеней свободы. По выборке рассчитаны два параметра, значит
9. Осуществим разбиение выборки на произвольное число интервалов, тем самым визуализировав вид плотности распределения случайной величины.
Таблица 2
Разбиение выборки на 20 и 30 интервалов
№ интервала | Интервал | Частота, ki | Интервал | Частота, ki |
1 | 70,138-70,327 | 1 | 70,138-70,422 | 2 |
2 | 70,327-70,516 | 1 | 70,422-70,705 | 4 |
3 | 70,516-70,705 | 4 | 70,705-70,988 | 2 |
4 | 70,705-70,893 | 1 | 70,988-71,271 | 6 |
5 | 70,836-71,082 | 2 | 71,271-71,554 | 3 |
6 | 71,082-71,271 | 5 | 71,554-71,837 | 5 |
7 | 71,271-71,459 | 2 | 71,837-72,120 | 4 |
8 | 71,,459-71,648 | 2 | 72,120-72,403 | 9 |
9 | 71,648-71,837 | 4 | 72,403-72,686 | 6 |
10 | 71,837-72,026 | 3 | 72,686-72,969 | 9 |
11 | 72,026-72,214 | 4 | 72,969-73,252 | 11 |
12 | 72,214-72,403 | 6 | 73,252-73,535 | 8 |
13 | 72,403-72,592 | 4 | 73,535-73,818 | 4 |
14 | 72,592-72,781 | 7 | 73,818-74,101 | 7 |
15 | 72,781-72,969 | 4 | 74,101-74,384 | 8 |
16 | 72,969-73,158 | 8 | 74,384-74,667 | 4 |
17 | 73,158-73,347 | 6 | 74,667-74,950 | 3 |
18 | 73,347-73,536 | 5 | 74,950-75,233 | 2 |
19 | 73,536-73,725 | 4 | 75,233-75,517 | 1 |
20 | 73,725-73,913 | 3 | 75,517-75,8 | 2 |
21 | 73,913-74,102 | 4 | ||
22 | 74,102-74,291 | 7 | ||
23 | 74,291-74,480 | 2 | ||
24 | 74,480-74,668 | 3 | ||
25 | 74,668-74,857 | 3 | ||
26 | 74,857-75,04 | 1 | ||
27 | 75,04-75,23 | 1 | ||
28 | 75,23-75,423 | 1 | ||
29 | 75,423-75,612 | 1 | ||
30 | 75,612-75,801 | 1 |
Рисунок 3. Диаграмма плотности распределения случайной величины с 20-и интервальным разбиением
Рисунок 4. Диаграмма плотности распределения случайной величины с 30-и интервальным разбиением
Рассчитаем основные параметры выборки для 20 интервалов: