Вариант 3.
1. Решите уравнение
Решение
По определению
Тогда
Так как m может быть только натуральным числом, то значение
Ответ:
2. В урне находится 12 белых и 8 черных шаров. Найти вероятность того, что два одновременно изъятых наудачу шара будут черными
Решение
При выборе двух шаров из 20 существует
Определим благоприятных исходов, т.е. извлечены два черных шара. Два черных шара из 8 можно выбрать
Искомая вероятность, согласно классическому определению вероятности, равна отношению числа благоприятных исходов к числу всех исходов:
Ответ:
3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому
Решение
Воспользуемся классическим определением вероятности. Двузначные числа начинаются с 10 и заканчиваются 99 и всего их 90, т.е. N= 90. Теперь посчитаем, сколько у нас чисел кратных либо 4, либо 5, либо тому и другому.
Число кратное 4-м имеет вид
В интервале от 10 до 99 всего
Так как множество чисел кратных 4 и множество чисел кратных 5 не пересекаются, то всего получается 22 + 18 = 40 чисел удовлетворяющих необходимому нам условию, причем числа кратные и четырем и пяти уже входят в эти 40 чисел. В итоге получаем, что вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому равна
Ответ:
4. В партии 10 деталей, из которых 8 стандартные. Из этой коробки наудачу извлекается 2 детали. Х – число стандартных деталей. Найти закон распределения, функцию распределения дискретной случайной величины Х, а также основные числовые характеристики
Решение
Среди 2-х извлеченных деталей может быть 0, 1 или 2 стандартные.
Найдем вероятность каждого исхода.
0 стандартных:
1 стандартная:
2 стандартных:
Закон распределения принимает вид:
Х | 0 | 1 | 2 |
р | | | |
Запишем функцию распределения полученной случайной величины Х:
Математическое ожидание М(Х) дискретной случайной величины находится по формуле:
Дисперсию дискретной случайной величины можно вычислить по формуле:
Среднеквадратичное отклонение:
s(Х)=
Ответ:
5. По данной выборке постройте полигон. Найти эмпирическую функцию.
Хi | 2 | 5 | 7 | 8 |
Ni | 1 | 3 | 2 | 4 |
Решение
Построим полигон частот – ломаную, соединяющую точки с координатами (Хi; Ni).
Объем выборки равен N = 1 + 3 + 2 + 4 = 10.
Найдем относительные частоты и составим эмпирическую функцию распределения:
Хi | 2 | 5 | 7 | 8 |
wi | 0,1 | 0,3 | 0,2 | 0,4 |
Ответ:решение выше.