Векторное поле называется однородным, если
В дальнейшем будем полагать, что скалярные функции: U(x; y; z) – определяющая скалярное поле, P(x; y; z), Q(x; y; z), R(x; y; z) – задающее векторное поле, непрерывны вместе со своими частными производными.
§2. СКАЛЯРНОЕ ПОЛЕ
Пусть задано скалярное стационарное поле U = f(M) = f(x; y; z) , где функцию f(x; y; z) будем всегда предполагать непрерывно дифференцируемой в рассматриваемой области.
Основной вопрос исследования скалярного поля есть вопрос об изменении функции U при переходе из одной точки пространства в другую. Для выяснения этого вопроса рассмотрим, прежде всего, геометрическое место точек, в которых величина U сохраняет постоянное значение. Это геометрическое место точек называют поверхностью уровня скалярного поля U. Ее уравнение в выбранной системе координат имеет вид: U(x; y; z) = C, где C = const. Следовательно, изменяя значения C, получаем семейство поверхностей уровня, которые заполняют всю область, где определено поле, и никакие две поверхности уровня, отвечающие различным значениям C, не имеют общих точек.
Задание всех поверхностей уровня с указанием соответствующих значений C равносильно заданию самого поля. Указанный способ изображения поля особенно удобен, если речь идет о поле, заданном в плоской области D двух переменных. В этом случае уравнение U(x,y) = C определяет, вообще говоря, некоторую кривую линию, называемую линией уровня плоского скалярного поля.
Такие линии различных скалярных полей всем хорошо известны: линии равных высот (горизонтали) удобны для изображения размера местности, линии равных температур (изотермы) или линии равных давлений (изобары) в метеорологии и т. д.
Производная скалярного поля по направлению
Производной скалярной функции U = f(x;,y; z) по направлению вектора
Следовательно,
Очевидно, что функция U имеет бесчисленное множество производных по направлениям в каждой точке M. Получим формулу для вычисления производной по направлению. Так как
где величины x0, y0 ,z0, cosα, cosβ, cosγ фиксированы, то U(M1) есть функция только смещения ρ
Обозначим эту функцию
Приρ = 0 имеемψ(0) = U(x0, y0, z0) = U(M0). Следовательно:
Т. е. получим формулу:
выражающую производную от функции U = f(x;,y; z) по направлению вектора
Градиент скалярного поля
Пусть задано скалярное поле U = f(x; y; z). Градиентом скалярного поляU = f(x; y; z) в точке M(x; y; z) называют вектор
Если функция U = f(x; y; z) имеет частные производные U'x, U'y, U'z в каждой точке некоторой области, то скалярное поле порождает в этой области векторное поле
Угол между векторами
т.е. производная скалярной функции U = f(x; y; z) в точке M в направлении вектора
Из формулы () следует, что, когда направление вектора
Вспомним, что, если поверхность задана уравнением F(x, y, z) = 0, нормаль к поверхности в точке M0(x0,y0,z0) может быть задана уравнением:
Теперь для скалярной функции U = f(x, y, z) построим поверхности уровня f(x, y, z) = C, тогда уравнение нормали к поверхности уровня в точке M0(x0, y0, z0) запишется:
т.е. имеет направляющий вектор
Следовательно, вектор
Свойства градиента функции:
1˚ Градиент направлен по нормали к поверхности уровня, проходящей через данную точку.
§3. ВЕКТОРНОЕ ПОЛЕ И ЕГО ЦИРКУЛЯЦИЯ
Одной из характеристик стационарного векторного поля служат векторные линии.
Векторной называется линия, в каждой точке которой направление касательной совпадает с направлением векторного поля в данной точке.
Пусть задано векторное поле
тогда вектор
коллинеарен вектору поля
Следовательно, уравнение векторных линий поля можно получить, решив систему дифференциальных уравнений: