Смекни!
smekni.com

Эконометрика как наука Содержание, цели, задачи, направления развития (стр. 3 из 7)

(П2.4)

где m- среднее значение анализируемого стационарного процесса.

Частные автокорреляции более высоких порядков могут быть подсчитаны аналогичным образом по элементам общей корреляционной матрицы R = ||rij||, в которой rij = = r(xi, xj) = r(|i-j|), где i,j = 1,…, Tи r(0) = 1. Так, например, частная автокорреляция 2-го порядка определяется по формуле:

(П2.5)

Эмпирические (выборочные) версии автокорреляционных функций получаются с помощью тех же соотношений (П2.4), (П2.5) при замене участвующих в них теоретических значений автокорреляций r(t) их статистическими оценками

.

Полученные таким образом частные автокорреляции rчаст(1),rчаст (2),… можно нанести на график, в котором роль абсциссы выполняет величина сдвига t.

Знание автокорреляционных функций r(t) и rчаст(t) оказывает существенную помощь в решении задачи подбора и идентификации модели анализируемого временного ряда.

Спектральная плотность p(w). Спектральную плотность стационарного временного ряда определяется через его автокорреляционную функцию соотношением

где

. Так как r(t) = r(-t), спектральная плотность может быть записана в виде

Следовательно, функция p(w) является гармонической с периодом 2p. График спектральной плотности, называемый спектром, симметричен относительно w = p. Поэтому при анализе поведения p(w) ограничиваются значениями 0 £w£p. Спектральная плотность принимает только неотрицательные значения.

Использование свойств этой функции в прикладном анализе временных рядов определяется как «спектральный анализ временных рядов». Применительно к статистическому анализу экономических рядов динамики этот подход не получил широкого распространения, т.к. эмпирический анализ спектральной плотности требует в качестве своей информационной базы либо достаточно длинных стационарных временных рядов, либо нескольких траекторий анализируемого временного ряда (и та и другая ситуация весьма редки в практике статистического анализа экономических рядов динамики).

Для содержательного анализа важно, что величина спектральной плотности характеризует силу взаимосвязи, существующей между временным рядом xt и гармоникой с периодом 2p/w. Это позволяет использовать спектр как средство улавливания периодичностей в анализируемом временном ряду: совокупность пиков спектра определяет набор гармонических компонентов в разложении (1.1.1). Если в ряде содержится скрытая гармоника частоты w, то в нем присутствуют также периодические члены с частотами w/2, w/3 и т.д.

Можно несколько расширить класс моделей стационарных временных рядов, используемых при анализе конкретных рядов экономической динамики.

Определение 2.2. Ряд называется слабо стационарным (или стационарным в широком смысле), если его среднее значение, дисперсия и ковариации не зависят от t.

П2.2. Неслучайная составляющая временного ряда и методы его сглаживания

Принципиальные отличия временного ряда от последовательности наблюдений, образующих случайную выборку, заключаются в следующем:

· во-первых, в отличие от элементов случайной выборки члены временного ряда не являются независимыми;

· во-вторых, члены временного ряда не обязательно являются одинаково распределенными, так что P{xt < x} ¹P{xt¢ < x} при t¹t¢.

Это означает, что свойства и правила статистического анализа случайной выборки нельзя распространять на временные ряды. С другой стороны, взаимозависимость членов временного ряда создает свою специфическую базу для построения прогнозных значений анализируемого показателя по наблюденным значениям.

Генезис наблюдений, образующих временной ряд (механизм порождения данных). Речь идет о структуре и классификации основных факторов, под воздействием которых формируются значения временного ряда. Как правило, выделяются 4 типа таких факторов.

· Долговременные, формирующие общую (в длительной перспективе) тенденцию в изменении анализируемого признака xt. Обычно эта тенденция описывается с помощью той или иной неслучайной функции fтр(t) (аргументом которой является время), как правило, монотонной. Эту функцию называют функцией тренда или просто – трендом.

· Сезонные, формирующие периодически повторяющиеся в определенное время года колебания анализируемого признака. Поскольку эта функция j(е) должна быть периодической (с периодами, кратными «сезонам»), в ее аналитическом выражении участвуют гармоники (тригонометрические функции), периодичность которых, как правило, обусловлена содержательной сущностью задачи.

· Циклические (конъюнктурные), формирующие изменения анализируемого признака, обусловленные действием долговременных циклов экономической или демографической природы (волны Кондратьева, демографические «ямы» и т.п.) Результат действия циклических факторов будем обозначать с помощью неслучайной функции y(t).

· Случайные (нерегулярные), не поддающиеся учету и регистрации. Их воздействие на формирование значений временного ряда как раз и обусловливает стохастическую природу элементов xt, а, следовательно, и необходимость интерпретации x1,…, xT как наблюдений, произведенных над случайными величинами x1,…,xТ. Будем обозначать результат воздействия случайных факторов с помощью случайных величин («остатков», «ошибок ») et.

Конечно, вовсе не обязательно, чтобы в процессе формирования значений всякого временного ряда участвовали одновременно факторы всех четырех типов. Выводы о том, участвуют или нет факторы данного типа в формировании значений конкретного ряда, могут базироваться как на анализе содержательной сущности задачи, так и на специальном статистическом анализе исследуемого временного ряда. Однако во всех случаях предполагается непременное участие случайных факторов. Таким образом, в общем виде модель формирования данных (при аддитивной структурной схеме влияния факторов) выглядит как:

xt = c1f(t) + c2j(t) +c3y(t) + et. (1.1.1)

где ci = 1, если факторы i-го типа участвуют в формировании значений ряда и ci = 0 – в противном случае.

Основные задачи анализа временных рядов. Базисная цель статистического анализа временного ряда заключается в том, чтобы по имеющейся траектории этого ряда:

1. определить, какие из неслучайных функций присутствуют в разложении (1.1.1), т.е. определить значения индикаторов ci;

2. построить «хорошие» оценки для тех неслучайных функций, которые присутствуют в разложении (1.1.1);

3. подобрать модель, адекватно описывающую поведение случайных остатков et, и статистически оценить параметры этой модели.

Успешное решение перечисленных задач, обусловленных базовой целью статистического анализа временного ряда, является основой для достижения конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда.

Существенную роль в решении задач выявления и оценивания трендовой, сезонной и циклической составляющих в разложении (1.1.1) играет начальный этап анализа, на котором:

· выявляется сам факт наличия/отсутствия неслучайной (и зависящей от времени t) составляющей в разложении (1.1.1); по существу, речь идет о статистической проверке гипотезы

H0:Ext = m = const (П2.6)

(включая утверждение о взаимной статистической независимости членов исследуемого временного ряда) при различных вариантах конкретизации альтернативных гипотез типа

HА: Ext¹ const;

· строится оценка (аппроксимация) для неизвестной интегральной неслучайной составляющей f(t) = c1fтр(t) + c2j(t) +c3y(t), т.е. решается задача сглаживания (элиминирования случайных остатков et) анализируемого временного ряда xt.

П2.2.1. Проверка гипотезы о неизменности среднего значения временного ряда

Критерий серий, основанный на медиане. Расположим члены анализируемого временного ряда в порядке возрастания, т.е. образуем по наблюдениям вариационный ряд:

x(1), x(2),…, x(T).

Определим выборочную медиану по формуле

После этого мы образуем «серии» из плюсов и минусов, на статистическом анализе которых основана процедура проверки гипотезы (П2.6). По исходному временному ряду, построим последовательность из плюсов и минусов следующим образом: вместо xt ставится «+», если

, и «-», если
(члены временного ряда, равные
, в полученной таким образом последовательности плюсов и минусов не учитываются).