3) Наконец, если ряд xt не имеетдетерминированного тренда (но может иметь стохастический тренд) и имеет нулевое математическое ожидание, то берется пара
SM:
DGP:
Методом наименьших квадратов оцениваются параметры данной SM и вычисляется значение t-статистики tj для проверки гипотезы H0 : j = 0. Полученное значение сравнивается с критическим уровнем tcrit, рассчитанным в предположении, что наблюдаемый ряд в действительности порождается данной моделью DGP (случайное блуждание без сноса). DS-гипотеза отвергается, если tj < tcrit.
Неправильный выбор оцениваемой статистической модели может существенно отразиться на мощности критерия Дики-Фуллера. Например, если наблюдаемый ряд порождается моделью случайного блуждания со сносом, а статистические выводы делаются по результатам оценивания статистической модели без включения в ее правую часть трендовой составляющей, то тогда мощность критерия, основанная на статистике tj, стремится к нулю с возрастанием количества наблюдений. С другой стороны, оцениваемая статистическая модель не должна быть и избыточной, поскольку это также ведет к уменьшению мощности критерия.
П1.2. Расширенный критерий Дики-Фуллера. Выбор количества запаздывающих разностей
Описанный выше критерий Дики-Фуллера фактически предполагает, что наблюдаемый ряд описывается моделью авторегрессии первого порядка (возможно, с поправкой на линейный тренд). Если же наблюдаемый ряд описывается моделью более высокого (но конечного) порядка p и характеристический многочлен имеет не болееодного единичного корня, то тогда можно воспользоваться расширенным (augmented) критерием Дики-Фуллера. В каждой из трех рассмотренных выше ситуаций достаточно дополнить правые части оцениваемых статистических моделей запаздывающими разностями Dxt-j, t = 2,…, p- 1, так что, например, в первой ситуации теперь оценивается расширенная статистическая модель SM:
Полученные при оценивании расширенных статистических моделей значения t-статистик tj для проверки гипотезы H0 : j = 0 сравниваются с теми же критическими значениями tcrit, что и для рассмотренных выше (нерасширенных) моделей. DS-гипотеза отвергается, если tj < tcrit.
Заметим, что расширенный критерий Дики-Фуллера может применяться и тогда, когда ряд xtописывается смешанной моделью авторегрессии-скользящего среднего. Если ряд наблюдений x1,…, xT порождается моделью ARIMA(p, 1, q) c q > 0, то его можно аппроксимировать моделью ARI(p*, 1) = ARIMA(p*, 1, 0) с p*< T 1/3 и применять процедуру Дики-Фуллера к этой модели.
Однако даже если ряд наблюдений x1,…, xT действительно порождается моделью авторегрессии AR(p) конечного порядка p, то значение p обычно не известно и его приходится оценивать на основании имеющихся наблюдений, а такое предварительное оценивание влияет на характеристики критерия. Поэтому при анализе данных приходится сначала выбирать значение p=pmaxдостаточно большим, так, чтобы оно было не меньше истинного порядка p0 авторегрессионной модели, описывающей ряд, или порядка р* аппроксимирующей авторегрессионной модели, а затем пытаться понизить используемое значение р, апеллируя к наблюдениям.
Такое понижение может осуществляться, например, путем последовательной редукции расширенной модели за счет исключения из нее незначимых (на 10% уровне) запаздывающих разностей (GS-стратегия перехода от общего к частному) или путем сравнения (оцененных) полной и редуцированных моделей с различными р³pmax по информационному критерию Шварца (SIC). Если pmax ³p0, то тогда в пределе (при Т®¥) SIC выбирает правильный порядок модели, а стратегия GS выбирает модель с р³р0; при этом факт определения порядка модели на основании имеющихся данных не влияет на асимптотическое распределение статистики Дики-Фуллера.
При практической реализации указанных двух подходов, когда мы имеем лишь ограниченное количество наблюдений, эти две процедуры могут приводить к совершенно различным выводам относительно необходимого количества запаздываний в правой части статистической модели, оцениваемой в рамках расширенного критерия Дики-Фуллера.
Глава 2. Проблема анализа временных рядов
П2.1. Стационарные временные ряды и их основные характеристики
Поиск модели, адекватно описывающей поведение случайных остатков et анализируемого временного ряда xt, производят, как правило, в рамках класса стационарных временных рядов.
Определение П2.1. Ряд xt называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей m наблюдений
такое же, как и для m наблюдений , при любых t, и t1,…, tm.Другими словами, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени. В частности, при m = 1 из предположения о строгой стационарности временного ряда xt следует, что закон распределения вероятностей случайной величины xt не зависит от t, а значит, не зависят от t и все его основные числовые характеристики, в том числе: среднее значение Ext = mи дисперсия Dxt = s2.
Очевидно, значение m определяет постоянный уровень, относительно которого колеблется анализируемый временной ряд xt, а постоянная величина s характеризует размах этих колебаний. Поскольку закон распределения вероятностей случайной величины xt одинаков при всех t, то он сам и его основные числовые характеристики могут быть оценены по наблюдениям x1,…, xT. В частности:
- оценка среднего значения, - оценка дисперсии. (П2.1)Автоковариационная функция g(t). Значения автоковариационной функции статистически оцениваются по имеющимся наблюдениям временного ряда по формуле
где t = 1,… T- 1, а вычислено по формуле (П2.1).Очевидно, значение автоковариационной функции при t = 0 есть не что иное, как дисперсия временного ряда, и, соответственно,
(П2.2)Автокорреляционная функция r(t). Одно из главных отличий последовательности наблюдений, образующих временной ряд, от случайной выборки заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависимыми. Степень тесноты статистической связи между двумя случайными величинами может быть измерена парным коэффициентом корреляции. Поскольку в нашем случае коэффициент измеряет корреляцию, существующую между членами одного и того же временного ряда, его принято называть коэффициентом автокорреляции. При анализе изменения величины r(t) в зависимости от значения t принято говорить об автокорреляционной функции r(t). График автокорреляционной функции иногда называют коррелограммой. Автокорреляционная функция (в отличие от автоковариационной) безразмерна, т.е. не зависит от масштаба измерения анализируемого временного ряда. Ее значения, по определению, могут колебаться от -1 до +1. Кроме того, из стационарности следует, что r(t) = r(-t), так что при анализе поведения автокорреляционных функций ограничиваются рассмотрением только положительных значений t.
Выборочный аналог автокорреляционной функции определяется формулой
(П2.3)Существуют общие характерные особенности, отличающие поведение автокорреляционной функции стационарного временного ряда. Другими словами, можно описать в общих чертах схематичный вид коррелограммы стационарного временного ряда. Это обусловлено следующим общим соображением: очевидно, чем больше разнесены во времени члены временного ряда xt и xt+t, тем слабее взаимосвязь этих членов и, соответственно, тем меньше должно быть по абсолютной величине значение r(t). При этом в ряде случаев существует такое пороговое значение r0, начиная с которого все значения будут тождественно равны нулю.
Частная автокорреляционная функция rчаст(t). С помощью этой функции реализуется идея измерения автокорреляции, существующей между разделенными t тактами времени членами временного ряда xt и xt+t, при устраненном опосредованном влиянии на эту взаимозависимость всех промежуточных членов этого временного ряда. Частная автокорреляция 1-го порядка может быть подсчитана с использованием соотношения: