Задачи
1. Ребро куба равно а.
Найдите:
Диагональ грани: d= a√2.
Диагональ куба: D= a√3.
Периметр основания: P= 4a.
2. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат.
Решение
Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть
Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. (основание треугольника одновременно является стороной грани).
Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь:
Катеты, соответственно равны (у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой
Таким образом:
3. В правильной четырёхугольной призме площадь основания 144
Решение
Правильный четырехугольник – это квадрат.
Соответственно, сторона основания будет равна
Откуда диагональ основания правильной прямоугольной призмы будет равна
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
Ответ: 22 см
4. Рассмотрим правильную четырехугольную призму
Решение
Построение сечения видно на рисунке, где К и L – середины сторон АВ и ВС основания призмы, Е и F – точки пересечения прямой КL соответственно с продолжениями сторон DA и DC. Сечением является пятиугольник
Проекция пятиугольника
Пусть диагональ ВD основания пересекает отрезок КL в точке О. Так как
Далее находим:
Из прямоугольного треугольника
Значит,
5. Дана правильная призма:
Решение
Площадь основания
АВ= 2 см.
Периметр основания Р = 8 см.
Высота призмы
6. Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.
Решение
Пусть
Значит,
Аналогично,