Доказательство: достаточно показать, как присвоить собственный номер каждому рациональному числу. Для этого представим каждое рациональное число в виде несократимой дроби:
Такое представление единственно. Высотой рационального числа
Будем нумеровать дроби в порядке возрастания
и т.д. Ясно, что каждое рациональное число когда-нибудь получит свой порядковый номер. При этом все номера 1,2,3,… будут использованы и разные рациональные числа получат разные номера. Тем самым построено взаимно однозначное соответствие множеств
Всякое множество, эквивалентное множеству натуральных чисел, называется счетным множеством.
Исходя из этого определения, можно упомянуть о некоторых теоремах:
1. Из всякого бесконечного множества можно выделить счетное подмножество.
2. Всякое бесконечное подмножество счетного множества тоже счетно.
3. Сумма конечного числа счетных множеств – тоже счетное множество.
4. Сумма счетного множества счетных множеств – тоже счетное множество.
5. Сумма конечного или счетного множества множеств, каждое из которых конечно или счетно, есть конечное или счетное множество.
6. Множество всех рациональных чисел счетно.
7. Множество
Утверждение 2. Всякое непустое подмножество счетного множества конечно или счетно.
Доказательство: занумеруем элементы счетного множества и перенумеруем затем элементы подмножества в порядке возрастания этих номеров. Если мы исчерпаем все подмножество на конечном шаге, то оно конечно, иначе - счетно.
Утверждение 3. Сумма конечного или счетного числа счетных множеств счетна.
Доказательство. Проведем нумерацию элементов суммы множеств по схеме:
За
Стоит обратить внимание, что бесконечные множества, рассмотренные в утверждениях 1-3, оказались равномощными, точнее счетными. Но не все бесконечные множества равномощны. Имеет место следующая теорема.
Теорема 1: совокупность
Доказательство: (от противного). Пусть
Таким образом, предположение о существовании биекции между
Следует отметить, что как результат, так и доказательство теоремы справедливы в том случае, когда
Бесконечное множество называется несчетным, если оно не эквивалентно
Прием, с помощью которого доказана теорема 1, называется канторов диагональный процесс. Впервые он был применен Кантором в 1874 г. При доказательстве несчетности точек на отрезке. Этот процесс называется диагональным, потому что если в теореме 1 в качестве