· Экспоненциальная регрессия.
где
· Полулогарифмическая регрессия.
где
· Гиперболическая регрессия.
где
· Обратная регрессия.
где
Для всех регрессий
Вывод:
А | R^2 | Fфакт | |
Линейная модель | 8,5 | 0,714 | 47,500 |
Степенная модель | 8,2 | 0,718 | 48,250 |
Полулогарифмическая модель | 7,9 | 0,736 | 52,920 |
Экспоненциальная модель | 9,0 | 0,660 | 36,870 |
Равносторонняя гипербола | 9,3 | 0,714 | 47,350 |
Обратная гипербола | 9,9 | 0,453 | 15,700 |
Все уравнения регрессии достаточно хорошо описывают исходные данные. Некоторое предпочтение можно отдать полулогарифмической функции, для которой значение R^2 наибольшее, а ошибка аппроксимации – наименьшая
7. Рассчитаем прогнозное значение результата по линейному уравнению регрессии, если прогнозное значение фактора увеличится на 7% от его среднего уровня. Определим доверительный интервал прогноза для уровня значимости α=0,05:
Прогнозное значение
где
Средняя стандартная ошибка прогноза
где
Предельная ошибка прогноза:
Доверительный интервал прогноза
27,11+6,53 = 33,64
Выполненный прогноз среднедушевых денежных доходов в месяц, xоказался надежным (р = 1 – α = 1 – 0,05 = 0,95), но неточным, так как диапазон верхней и нижней границ доверительного интервала