Пример 2. Для моделирования отдельного региона или страны в целом (то есть для решения задач на макроэкономическом, а также на микроэкономическом уровне) часто используется ПФ вида y=
ПФКД активно применяется для решения разнообразных теоретических и прикладных задач благодаря своей структурной простоте. ПФКД принадлежит к классу, так называемых, мультипликативных ПФ (МПФ). В приложениях ПФКД х1=К равно объему используемого основного капитала (объему используемых основных фондов – в отечественной терминологии),
Y=
Историческая справка
В 1927 г. Пол Дуглас, экономист по образованию, обнаружил, что если совместить графики зависимости от времени логарифмов показателей реального объема выпуска (Y), капитальных вложений (К) и затрат труда (L), то расстояния от точек графика показателей выпуска до точек графиков показателей затрат труда и капитала будут составлять постоянную пропорцию. Затем он обратился к математику Чарльзу Коббу с просьбой найти математическую зависимость, обладающую такой особенностью, и Кобб предложил следующую функцию:
.
Эта функция была предложена примерно 30 годами раньше Филиппом Уикстидом, как было указано Ч.Коббом и П.Дугласом в их классической работе (1929 г.), но они были первыми, кто использовал для ее построения эмпирические данные. Авторы не описывают, каким образом они на самом деле подобрали функцию, но предположительно они использовали форму регрессионного анализа, так как ссылались на «теорию наименьших квадратов».
Пример 3. Линейная ПФ (ЛПФ) имеет вид:
этот переход имеет вид:
Если сумма показателей степени в ПФ Кобба-Дугласа равна единице, то ее можно записать в несколько другой форме:
Дроби
т.е. из двухфакторной ПФКД получим формально однофакторную ПФКД. В связи с тем, что 0<a1<1, из последней формулы следует, что производительность труда z растет медленнее его капиталовооруженности. Однако этот вывод справедлив для случая статической ПФКД в рамках существующих технологии и ресурсов.
Отметим, что дробь
ПФ называется динамической, если:
1) время t фигурирует в качестве самостоятельной переменной величины (как бы самостоятельного фактора производства), влияющего на объем выпускаемой продукции;
2) параметры ПФ и ее характеристика f зависят от времени t.
Отметим, что если параметры ПФ оценивались по данным временных рядов (объемов ресурсов и выпуска) продолжительностью
При построении ПФ научно-технический прогресс (НТП) может быть учтен с помощью введения множителя НТП
Эта ПФ – простейший пример динамической ПФ; она включает нейтральный, то есть нематериализованный в одном из факторов технический прогресс. В более сложных случаях технический прогресс может воздействовать непосредственно на производительность труда или капиталоотдачу: Y(t)=f(A(t)×L(t),K(t)) или Y(t)=f(A(t)×K(t), L(t)). Он называется, соответственно, трудосберегающим или капиталосберегающим НТП.
Пример 4. Приведем вариант ПФКД с учетом НТП
Расчет численных значений параметров такой функции проводится с помощью корреляционного и регрессионного анализа.
Выбор аналитической формы ПФ
3. Свойства и основные характеристики производственных функций
Для производства конкретного продукта требуется сочетание разнообразных факторов. Несмотря на это, различные производственные функции обладают рядом общих свойств.
Для определенности ограничимся производственными функциями двух переменных
1) без ресурсов нет выпуска, т.е. f(0,0,a)=0;
2) при отсутствии хотя бы одного из ресурсов нет выпуска, т.е.
3) с ростом затрат хотя бы одного ресурса объем выпуска растет;
4) с ростом затрат одного ресурса при неизменном количестве другого ресурса объем выпуска растет, т.е. если x>0, то
5) с ростом затрат одного ресурса при неизменном количестве другого ресурса величина прироста выпуска на каждую дополнительную единицу i-го ресурса не растет (закон убывающей эффективности), т.е. если
6) при росте одного ресурса предельная эффективность другого ресурса возрастает, т.е. если x>0, то
7) ПФ является однородной функцией, т.е.
Подобно линии уровня целевой функции оптимизационной задачи, для ПФ также имеет место аналогичное понятие. Линия уровня ПФ – это множество точек, на котором ПФ принимает постоянное значение. Иногда линии уровня называют изоквантами ПФ. Возрастание одного фактора и уменьшение другого могут происходить таким образом, что общий объем производства остается на прежнем уровне. Изокванты как раз и определяют все возможные комбинации факторов производства, необходимых для достижения заданного уровня продукции.
Рис. 2.
Из рисунка 2 видно, что вдоль изокванты выпуск продукции постоянный, то есть прирост выпуска отсутствует. Математически это означает, что полный дифференциал ПФ на изокванте равен нулю:
Изокванты обладают следующими свойствами: