Смекни!
smekni.com

по Эконометрике 2 (стр. 2 из 4)

Если tухj > 2.03 => коэффициент корреляции между факторами у и хj статистически значим.

> 2,03 → коэф-т корреляции между факторами у и х1 значим.

> 2,03 → коэф-т корреляции между факторами у и х3 значим.

< 2,03 → коэф-т корреляции между факторами у и х5 незначим.

Очевидно, что наиболее сильная корреляция (связь) имеется между У - Х3.

Рассмотрим матрицу парных коэффициентов корреляции между факторами Хj. В нашем случае, явление сильной мультиколлинеарности наблюдается между факторами: Х1 – Х3, где rx1x3 > 0,8.

Задание 2. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.

Задание 3 - 4. Рассчитайте параметры линейной парной регрессии для всех факторов X.

1. Линейная модель: y^ = a + b * x1.

Составим таблицу исходных и расчетных данных:

t y x1 x*x y*x у * у (y - yср)2 (x1 - xср)2 y^ (y - y^)2 E, %
1 115 0 0 0 13225,0 455,8 0,3 117,5 6,3 2,2
2 85 1 1 85 7225,0 74,8 0,2 76,0 80,6 10,6
3 69 1 1 69 4761,0 607,6 0,2 76,0 49,3 10,2
4 57 1 1 57 3249,0 1343,2 0,2 76,0 361,7 33,4
5 184,6 0 0 0 34077,2 8271,9 0,3 117,5 4501,9 36,3
6 56 1 1 56 3136,0 1417,5 0,2 76,0 400,8 35,7
7 85 0 0 0 7225,0 74,8 0,3 117,5 1056,5 38,2
8 265 0 0 0 70225,0 29360,8 0,3 117,5 21755,2 55,7
9 60,65 1 1 60,65 3678,4 1089,0 0,2 76,0 236,2 25,3
10 130 0 0 0 16900,0 1321,3 0,3 117,5 156,2 9,6
11 46 1 1 46 2116,0 2270,5 0,2 76,0 901,2 65,3
12 115 0 0 0 13225,0 455,8 0,3 117,5 6,3 2,2
13 70,96 0 0 0 5035,3 514,8 0,3 117,5 2166,3 65,6
14 39,5 1 1 39,5 1560,3 2932,2 0,2 76,0 1333,7 92,5
15 78,9 0 0 0 6225,2 217,6 0,3 117,5 1490,2 48,9
16 60 1 1 60 3600,0 1132,3 0,2 76,0 256,6 26,7
17 100 1 1 100 10000,0 40,3 0,2 76,0 575,1 24,0
18 51 1 1 51 2601,0 1819,0 0,2 76,0 626,0 49,1
19 157 0 0 0 24649,0 4013,2 0,3 117,5 1560,0 25,2
20 123,5 1 1 123,5 15252,3 891,0 0,2 76,0 2254,4 38,4
21 55,2 0 0 0 3047,0 1478,4 0,3 117,5 3881,7 112,9
22 95,5 1 1 95,5 9120,3 3,4 0,2 76,0 379,5 20,4
23 57,6 0 0 0 3317,8 1299,6 0,3 117,5 3588,4 104,0
24 64,5 1 1 64,5 4160,3 849,7 0,2 76,0 132,7 17,9
25 92 1 1 92 8464,0 2,7 0,2 76,0 255,4 17,4
26 100 1 1 100 10000,0 40,3 0,2 76,0 575,1 24,0
27 81 0 0 0 6561,0 160,0 0,3 117,5 1332,5 45,1
28 65 1 1 65 4225,0 820,8 0,2 76,0 121,4 17,0
29 110 0 0 0 12100,0 267,3 0,3 117,5 56,3 6,8
30 42,1 1 1 42,1 1772,4 2657,4 0,2 76,0 1150,5 80,6
31 135 0 0 0 18225,0 1709,8 0,3 117,5 306,1 13,0
32 39,6 1 1 39,6 1568,2 2921,4 0,2 76,0 1326,4 92,0
33 57 1 1 57 3249,0 1343,2 0,2 76,0 361,7 33,4
34 80 0 0 0 6400,0 186,3 0,3 117,5 1406,5 46,9
35 61 1 1 61 3721,0 1066,0 0,2 76,0 225,6 24,6
36 69,6 1 1 69,6 4844,2 578,4 0,2 76,0 41,2 9,2
37 250 1 1 250 62500,0 24445,3 0,2 76,0 30269,2 69,6
38 64,5 1 1 64,5 4160,3 849,7 0,2 76,0 132,7 17,9
39 125 0 0 0 15625,0 982,8 0,3 117,5 56,2 6,0
40 152,3 0 0 0 23195,3 3439,8 0,3 117,5 1210,8 22,8
сумма 3746 23 23 1748 454221 103406,4 9,8 3746 86584 1476,2
ср.зн. 93,65 0,58 0,58 43,71 11355,53 2585,16 0,2 93,65 2164,61 36,9

Найдем параметры уравнения линейной регрессии:

Итак, у^ = 117,50 + (-41,48)*Х1

Рассчитаем коэффицент детерминации:

Оценим значимость уравнения регрессии с помощью F-критерия Фишера:


Fтабл = 4,40 (для a = 0,05; k1 = m = 1; k2 = n - m - 1 = 40 - 1 - 1 = 38)

Т.к. F > Fтабл, то с вероятностью 95% данное уравнение регрессии значимо

Рассчитаем среднюю ошибку аппроксимации:

В среднем расчетные значения y* отличаются от фактических значений y на 36,9 %.

2. Линейная модель: y^ = a + b * x3.

Составим таблицу исходных и расчетных данных:

t y x3 x*x y*x у * у (y - yср)2 (x - xср)2 y^ (y - y^)2 E, %
1 115 70,4 4956,16 8096 13225,0 455,8 1,3 95,5 380,6 17,0
2 85 82,8 6855,84 7038 7225,0 74,8 183,9 114,6 877,2 34,8
3 69 64,5 4160,25 4450,5 4761,0 607,6 22,5 86,4 302,4 25,2
4 57 55,1 3036,01 3140,7 3249,0 1343,2 199,9 71,9 221,7 26,1
5 184,6 83,9 7039,21 15487,94 34077,2 8271,9 214,9 116,3 4662,9 37,0
6 56 32,2 1036,84 1803,2 3136,0 1417,5 1372,0 36,6 377,8 34,7
7 85 65 4225 5525 7225,0 74,8 18,0 87,2 4,7 2,5
8 265 169,5 28730,25 44917,5 70225,0 29360,8 10052,1 248,4 276,9 6,3
9 60,65 74 5476 4488,1 3678,4 1089,0 22,7 101,0 1631,6 66,6
10 130 87 7569 11310 16900,0 1321,3 315,4 121,1 79,3 6,8
11 46 44 1936 2024 2116,0 2270,5 637,1 54,8 76,8 19,1
12 115 60 3600 6900 13225,0 455,8 85,4 79,4 1264,0 30,9
13 70,96 65,7 4316,49 4662,072 5035,3 514,8 12,5 88,2 298,6 24,4
14 39,5 42 1764 1659 1560,3 2932,2 742,0 51,7 148,4 30,8
15 78,9 49,3 2430,49 3889,77 6225,2 217,6 397,6 62,9 254,7 20,2
16 60 64,5 4160,25 3870 3600,0 1132,3 22,5 86,4 696,4 44,0
17 100 93,8 8798,44 9380 10000,0 40,3 603,2 131,6 997,7 31,6
18 51 64 4096 3264 2601,0 1819,0 27,5 85,6 1198,4 67,9
19 157 98 9604 15386 24649,0 4013,2 827,1 138,1 358,5 12,1
20 123,5 107,5 11556,25 13276,25 15252,3 891,0 1463,8 152,7 853,8 23,7
21 55,2 48 2304 2649,6 3047,0 1478,4 451,1 60,9 32,9 10,4
22 95,5 80 6400 7640 9120,3 3,4 115,8 110,3 219,0 15,5
23 57,6 63,9 4083,21 3680,64 3317,8 1299,6 28,5 85,5 776,3 48,4
24 64,5 58,1 3375,61 3747,45 4160,3 849,7 124,1 76,5 144,4 18,6
25 92 83 6889 7636 8464,0 2,7 189,3 114,9 525,6 24,9
26 100 73,4 5387,56 7340 10000,0 40,3 17,3 100,1 0,0 0,1
27 81 45,5 2070,25 3685,5 6561,0 160,0 563,6 57,1 572,2 29,5
28 65 32 1024 2080 4225,0 820,8 1386,8 36,3 826,3 44,2
29 110 65,2 4251,04 7172 12100,0 267,3 16,3 87,5 507,7 20,5
30 42,1 40,3 1624,09 1696,63 1772,4 2657,4 837,5 49,1 48,4 16,5
31 135 72 5184 9720 18225,0 1709,8 7,6 98,0 1372,1 27,4
32 39,6 36 1296 1425,6 1568,2 2921,4 1104,9 42,4 8,0 7,1
33 57 61,6 3794,56 3511,2 3249,0 1343,2 58,4 81,9 620,8 43,7
34 80 35,5 1260,25 2840 6400,0 186,3 1138,4 41,7 1470,5 47,9
35 61 58,1 3375,61 3544,1 3721,0 1066,0 124,1 76,5 240,7 25,4
36 69,6 83 6889 5776,8 4844,2 578,4 189,3 114,9 2054,5 65,1
37 250 152 23104 38000 62500,0 24445,3 6849,2 221,4 819,9 11,5
38 64,5 64,5 4160,25 4160,25 4160,3 849,7 22,5 86,4 479,1 33,9
39 125 54 2916 6750 15625,0 982,8 232,3 70,2 3004,0 43,8
40 152,3 89 7921 13554,7 23195,3 3439,8 390,5 124,2 790,6 18,5
сумма 3746 2768 222656 307179 454221 103406 31068,8 3746 29475 1114,8
ср.зн. 93,65 69,21 5566,40 7679,46 11355,53 2585,16 776,72 93,65 736,88 27,9

Найдем параметры уравнения линейной регрессии: