Эта категория имеет два объекта и три стрелки и выглядит так:
в качестве пары объектов возьмем числа 0 и 1, а в качестве стрелок – пары <0,0>, <0,1> и <1,1>. Пусть <0,0>:0®0,<0,1>:0®1,
<1,1>:1®1.
Тогда <0,0>=10 (единичная стрелка на 0) и <1,1>=11 (единичная стрелка на 1). При наших требованиях к категориям, композицию на этом множестве можно ввести только одним способом: 10°10=10, <0,1>°10=<0,1>, 11°<0,1>=<0,1>, 11°11=11. тогда для любых объектов категории выполняется закон тождества и закон ассоциативности.
Эта категория имеет три объекта и шесть стрелок.
объекты: 0,1,2стрелки: <0,0>, <0,1>, <1,1>, <1,2>, <2,2>, <2,0>.
Стрелки <0,0>,<1,1>,<2,2> - единичные.
Композицию определяем следующим образом:
10°10=10, 11°11=11, 12°12=12, <0,1>°10=<0,1>, 11°<0,1>=<0,1>, <1,2>°11=<1,2>, 12°<1,2>=<1,2>, <2,0>°12=<2,0>, 10°<2,0>=<2,0>. Тогда выполняется закон тождества и закон ассоциативности.
Категория, в которой любые два объекта p и q связаны не более чем одной стрелкой p®q, называется категорией предпорядка. Если Р – совокупность объектов категории предпорядка, то на ней определено следующее бинарное отношение R: <p,q>ÎRÛ$ p®q. Отношение R обладает следующими свойствами:
2) рефлексивность (вытекает из того, что для любого объекта категории существует единичная стрелка)
3) транзитивность (вытекает из того, что стрелка p®q дает в композиции со стрелкой q®s стрелку p®s)
Первые три примера являются и примерами категории предпорядка. Но в них отношение предпорядка удовлетворяет еще свойству антисимметричности, а именно если p®q и q®p, то p=q. Антисимметричное отношение предпорядка называют отношением частичного порядка. Простейшим примером категории предпорядка,
но не частичного порядка является двухобъектная категория с четырьмя стрелками: в этой категории существуют стрелки p→q и q→p, но р¹q.Категория W называется дискретной, если в ней имеются только единичные стрелки, т.е. каждая стрелка является единичной для некоторого объекта. Отождествляя объекты с единичными стрелками, можно заметить, что дискретная категория есть не что иное, как совокупность объектов. Действительно, любое множество X можно превратить в дискретную категорию, добавив единичные стрелки для каждого xÎX.
1. Букур И., Деляну А. Введение в теорию категорий и функторов. – М.: Мир, 1972.
2. Голдблат Р. Топосы. Категорный анализ логики. – М.: Мир, 1983.
3. Скорняков Л.А. Элементы общей алгебры. – М.: Наука, 1983.
4. Цаленко М.Ш., Шульгейфер Е.Г. Основы теории категорий. – М.: Наука, 1974.