Если оценка является смещенной (т.е. последнее равенство не имеет места), то величина смещения
Говорят также, что оценка
для любого фиксированного пи
Определение 1.3.1.3. Если в некотором классе несмещенных оценок параметра
оценивать неизвестные параметры и при малых объемах выборки.
Естественным является то требование, при выполнении которого оценка не дает систематической погрешности в сторону завышения (или занижения) истинного значения параметра
Определение 1.3.1.4. Статистику
Если оценка является смещенной (т.е. последнее равенство не имеет места), то величина смещения
Говорят также, что оценка
удовлетворяют условию
для любого фиксированного пи
Определение. Если в некотором классе несмещенных оценок параметра
Иными словами, дисперсия эффективной оценки параметра в некотором классе является минимальной среди дисперсий всех оценок из рассматриваемого класса несмещенных оценок.
Замечание 1.3.1.1. Эффективную оценку в классе всех несмещенных оценок будем называть эффективной оценкой, не добавляя слов „в классе несмещенных оценок".
Замечание 1.3.1.2. В литературе по математической статистике при рассмотрении параметрических моделей вместо термина «эффективная оценка» классе всех несмещенных оценок используют и другие: «несмещенная оценка с минимальной дисперсией», «оптимальная оценка». Теорема 1.3.1. Оценка
(выборочное среднее) математического ожидания
генеральной совокупности Xс конечной дисперсией является несмещенной, состоятельной и эффективной в классе всех линейных оценок, т.е. оценок вида
где , для произвольной
Напомним, что элементы
1.4 Критерии согласия
Пусть (X1,..,Xn) - выборка с неизвестным законом распределения F(X). Рассмотрим гипотезы Н0: F(x)=F0(x) при конкурирующей Н1: F(x)¹F0(x). F0(x)- некоторая заданная функция распределения.
Задача проверки гипотез относительно законов распределения называется задачей проверки согласия, а критерий для этой задачи - –ритерием согласия.
Рассмотрим критерий согласия c2, или критерий Пирсона.
Разобьем ось х на т интервалов
Рассмотрим случайную величину (ni - –лучайное)
при
Решающее правило для уровня значимости a:
При построении c2n должно выполняться условие ni³10, в противном случае объединяют интервалы.
В случае применения гипотезы Н0 говорят, что различие между F(x) и F0(x) является случайным с доверительной вероятностью 1-a и обусловлено конечностью выборки.
1.5 Теорема Чебышева
Неравенство Чебышева. Для любой случайной величины Х, имеющей математическое ожидание МХ и дисперсию DX, справедливо неравенство
где a — любое положительное число.
Доказательство. Доказательство проведём сначала для непрерывной случайной величины Х с плотностью распределения f(x).
Обозначим через А событие, состоящее в том, что случайная точка Х попадает за пределы участка (MX-a; MX+a), то есть
А: {|X-MX|³a}
aa
| |
|
MX -a MX MX+a