Лемма. Пусть
Доказательство. Пусть
И пусть
Лемма доказана.
Решетка
Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н. Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.
Напомним, что решеткой называется частично упорядоченное множество, в котором для любых двух элементов существует как наибольший, так и наименьший элементы.
Через
Если две
Для любых двух
Определение.Непустую совокупность формаций
Лемма. Частично упорядоченное множество с наибольшим элементом является полной решеткой, если в нем любая непустая совокупность элементов обладает нижней гранью.
Лемма. Множество всех
Доказательство. Частичным порядком
В качестве наибольшего элемента в
Лемма. Пусть
Лемма. Пусть
Лемма. Пусть
Определение.Пусть L - полная решетка и