Смекни!
smekni.com

Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь (стр. 4 из 5)

,(2.6)

де

– діагональний елемент матриці
.

; (2.7)

; (2.8)

; (2.9)

Обчислені критерії порівнюються з табличним значенням

, коли є
ступенів свободи та при рівні значущості
.

Визначимо частинні коефіцієнти кореляції

.

Частинні коефіцієнти кореляції показують тісноту зв’язку між двома пояснюючими змінними за умови, що всі інші змінні не впливають на цей зв’язок і обчислюються за формулою [1]:

.(2.10)

(2.11)

(2.12)

(2.13)

Отже, спираючись на здобуті нами значення окремих (частинних) коефіцієнтів кореляції, можна сказати, що зв’язок між фондовіддачею та продуктивністю праці є тісним, якщо не враховувати вплив питомих інвестицій, зв’язок між фондовіддачею та питомими інвестиціями є слабким, якщо не брати до уваги вплив продуктивності праці. Зв’язок між продуктивністю праці та питомими інвестиціями є тісним, якщо не враховувати фондовіддачу.

Визначимо

критерій .

Ці критерії застосовуються для визначення мультиколінеарності двох пояснюючих змінних і обчислюються за формулою [1]:

.(2.14)

;(2.15)

;(2.16)

;(2.17)

Обчислені

критерії порівнюються з табличним значенням
, коли маємо
ступенів свободи та при рівні значущості
.

Оскільки

, то продуктивність праці та фондовіддача є відповідно мультиколінеарними між собою;
,
, тому відповідно продуктивність праці та питомі інвестиції не є мультиколінеарними між собою.

Висновок: Дослідження, проведені за алгоритмом Фаррара-Глобера показали, що мультиколінеарність між пояснюючими змінними даного прикладу існує. Отже, для того, щоб можна було застосувати метод 1МНК для оцінювання параметрів моделі за цією інформацію, необхідно в першу чергу звільнитися від мультиколінеарності.

ЗАДАЧА 3. ОЦІНКА ПАРАМЕТРІВ РЕГРЕСІЙНОЇ МОДЕЛІ З АВТОКОРЕЛЬОВАНИМИ ЗАЛИШКАМИ

Статистичні дані про залежність витрат на рекламу від прибутку на деякому підприємстві протягом 15 років наведені в табл.3.1.

Таблиця 3.1 – Статистичні дані про залежність витрат на рекламу від прибутку

Рік Прибуток підприємства, млн. грн.,
Витрати на рекламу, тис. грн.,
1 18,00 98,00
2 5,00 73,00
3 13,00 49,00
4 5,00 82,00
5 15,00 75,00
6 93,00 70,00
7 14,00 56,00
8 50,00 80,00
9 14,00 68,00
10 2,00 45,00
11 7,00 90,00
12 49,00 78,00
13 3,00 62,00
14 95,00 88,00
15 6,00 95,00

Необхідно: оцінити параметри рівняння взаємозв’язку між обсягом витрат на рекламу і обсягом отриманого прибутку, вважаючи, що величина витрат на рекламу залежить від розміру отриманого прибутку; перевірити наявність автокореляції залишків, при наявності авторегресійного процесу до оцінки параметрів регресії застосувати метод Ейткена . Для знаходження оцінок параметрів лінійної регресії скористаємось формулою [1]:

.(3.1)

Розрахуємо матрицю моментів

:

. (3.2)

Розрахуємо вектор:

. (3.3)

Оцінки параметрів будуть дорівнювати:

. (3.4)

Економетрична модель має вигляд:

,(3.5)

. (3.6)

На основі економетричної моделі визначимо вектор збурення

, який є різницею між розрахованим
та фактичним
значенням витрат на рекламу.

(3.7)

Розрахуємо критерій Дарбіна-Уотсона:

,(4)

Висновок: Оскільки критерій Дарбіна-Уотсона належить інтервалу [1,36; 2,64], то можна говорити про відсутність автокореляції. Подальше проведення розрахунків за критерієм фон-Неймана та застосування методу Ейткена є недоцільним.


ЗАДАЧА 4 ОЦІНКА ПАРАМЕТРІВ СИСТЕМИ ЕКОНОМЕТРИЧНИХ РІВНЯНЬ

Оцінити параметри економетричної моделі, що складається з двох рівнянь:

(4.1)

Перше рівняння відображає залежність грошового обігу

від оборотності грошей
та грошових доходів населення
. У другому рівнянні оборотність грошей
визначається у вигляді функції від грошового обігу
та розміру вкладу в ощадбанк
. Між двома змінними – грошовим обігом та оборотністю грошей – існують одночасні зв’язки, так як кожна з них в одному рівнянні виступає як факторна змінна, у другому – як результативна.

Введемо позначення:

грошовий обіг
;

оборотність грошей
;

грошові доходи населення
;

розмір вкладу в ощадбанк
.

Дані про

,
,
,
представлено у вигляді відхилень від відповідних середніх у табл.4.1.

Таблиця 4.1 – Відхилення змінних

,
,
,
від їх середніх значень