Смекни!
smekni.com

Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь (стр. 3 из 5)

Дані величини можна також розрахувати за формулами [1]:

, (2.1)

, (2.2)

де

– середнє значення
-тої пояснюючої змінної ;

– індивідуальне значення j-тої пояснюючої змінної;

– номер пояснюючої змінної;

– номер точки спостереження (місяця);

– стандартне відхилення
-тої пояснюючої змінної;

– число спостережень .

Додаткові розрахунки наведено в таблиці 2.2.

Таблиця 2.2 – Проміжні розрахунки

Місяць
1 67 30 6 23
2 60 35 16 27
3 43 29 11 25
4 67 16 16 25
5 75 32 7 28
6 66 25 14 16
7 45 32 11 17
8 69 27 11 26
9 41 14 10 28
10 72 20 15 28
11 77 22 13 23
12 63 35 11 29
13 52 36 13 26
14 72 21 17 29
15 73 36 10 23
16 55 38 15 31
17 81 34 17 33
18 75 39 14 25
19 70 43 21 25
20 80 29 27 34
Всього 1303 593 275 521
Середнє значення 65,15 29,65 13,75 26,05
Стандартне відхилення, δ 12,13 7,92 4,75 4,48

Нормалізуємо пояснюючі змінні. Серед статистичних функцій MS Excel знайдемо функцію “НОРМАЛІЗАЦІЯ ” та нормалізуємо

.

Для цього можна також скористатись формулою [1]:

. (2.3)

0,044215142 -1,633365935 -0,681149827
0,675860029 0,474203013 0,212161422
-0,082113835 -0,579581461 -0,234494203
-1,724390542 0,474203013 -0,234494203
0,296873097 -1,42260904 0,435489234
-0,587429745 0,052689224 -2,244444513
0,296873097 -0,579581461 -2,021116701
-0,33477179 -0,579581461 -0,011166391
-1,977048497 -0,790338356 0,435489234
-1,219074632 0,263446119 0,435489234
-0,966416677 -0,158067671 -0,681149827
0,675860029 -0,579581461 0,658817046
0,802189007 -0,158067671 -0,011166391
-1,092745655 0,684959908 0,658817046
0,802189007 -0,790338356 -0,681149827
1,054846962 0,263446119 1,105472671
0,549531052 0,684959908 1,552128295
1,181175939 0,052689224 -0,234494203
1,686491849 1,527987488 -0,234494203

Транспонуємо матрицю

(нормалізовану) в матрицю
0,0442 0,6759 -0,0821 -1,7244 0,2969 -0,5874 0,2969
-1,6334 0,4742 -0,5796 0,4742 -1,4226 0,0527 -0,5796
-0,6811 0,2122 -0,2345 -0,2345 0,4355 -2,2444 -2,0211
-0,3348 -1,9770 -1,2191 -0,9664 0,6759 0,8022 -1,0927
-0,5796 -0,7903 0,2634 -0,1581 -0,5796 -0,1581 0,6850
-0,0112 0,4355 0,4355 -0,6811 0,6588 -0,0112 0,6588
0,8022 1,0548 0,5495 1,1812 1,6865 -0,0821
-0,7903 0,2634 0,6850 0,0527 1,5280 2,7925
-0,6811 1,1055 1,5521 -0,2345 -0,2345 1,7755

Перемножимо матриці

та
:
19 1,604138357 1,025534341
1,604138357 19 8,107441683
1,025534341 8,107441683 19

Знайдемо кореляційну матрицю R .

Для знаходження кореляційної матриці R необхідно кожний елемент матриці

помножити на
(у нашому випадку
):
1 0,084428335 0,053975492
0,084428335 1 0,426707457
0,053975492 0,426707457 1

Знайдемо визначник матриці

).

Для знаходження

необхідно серед математичних функцій MS Excel знайти функцію “МОПРЕД”. Скориставшись нею, дістанемо:
R = 0,811768312. Оскільки
наближається до нуля, то в масиві пояснюючих змінних може існувати мультиколінеарність.

Прологарифмуємо визначник матриці

:
-0,208540309.

Обчислимо критерій Пірсона

за формулою [1]:

(2.9)

(2.5)

Знайдене значення

порівняємо з табличним значенням
, коли маємо
ступенів свободи та при рівні значущості
.

Оскільки

, то в масиві пояснюючих змінних (продуктивність праці, питомі інвестиції та фондовіддача) мультиколінеарність не існує.

Обчислимо

критерій. Для визначення
критеріїв необхідно знайти матрицю
, яка є оберненою до матриці
:
1,007579051 -0,075633144 -0,022111348
-0,075633144 1,228289687 -0,520038033
-0,022111348 -0,520038033 1,223097577

Безпосередньо
критерій обчислюється за формулою: