Смекни!
smekni.com

Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь (стр. 2 из 5)

Компоненти дисперсії
Число ступенів свободи,
Сума квадратів,
Середнє значення суми квадратів,
Регресія 1,00 43324,40 43324,40
Відхилення від регресії 10,00 1813,85 181,39
Всього 11,00 45138,25

, (1.24)

. (1.25)

Таким чином :

, (1.26)

де (1,10) – число ступенів свободи відповідно чисельника і знаменника.

. (1.27)

Висновок:

>
, 238,85 > 4,96 тобто розходження обґрунтованої та необґрунтованої складових дисперсії носить не випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу тісний.

Оцінку лінійного коефіцієнту кореляції

здійснимо за допомогою формули [1]:

, (1.28)

. (1.29)

Висновок: Високий лінійний коефіцієнт кореляції свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу .

Побудуємо довірчі інтервали для

та
. Побудова довірчого інтервалу
для кутового коефіцієнту кореляції
здійснюється за формулою:

, (1.30)

де

– деяка похибка при оцінці
;
– довірчий коефіцієнт при рівні імовірності
та
ступенях свободи. Знаходиться за таблицями
–розподілу Ст’юдента .

Приймається якісна гіпотеза , відповідно до якої

. Формула для розрахунку
має вигляд [1]:

, (1.31)

(1.32)

; (1.33)

; (1.34)

. (1.35)

Висновок: Результати регресії не відповідають якісній гіпотезі, згідно до якої 0‹β‹1, тому робимо висновок про недостатню точність оцінки b.

Побудова довірчого інтервалу

для коефіцієнта
здійснюється за формулою [1]:

, (1.36)

де

– деяка похибка при оцінюванні а ;

, (1.37)

.(1.38)

; (1.39)

(1.40)

Висновок: До інтервалу входять як від’ємні, так і додатні значення, отже при 95% імовірності похибка при оцінюванні

не істотно відмінна від нуля. Побудова довірчого інтервалу R для лінійного коефіцієнту кореляції r здійснюється за формулою [1]:

, (1.41)

де Sr- деяка похибка при оцінці r.

- деяка функція при рівні імовірності Р, коефіцієнті кореляція r та деякій точковій оцінці ρ. Оскільки ρ не можна визначити, а, значить, і значення всієї функції невідоме, необхідно скористатися Z-перетворенням Фішера. Для цього вводимо нову змінну zr:

(1.42)

Розподіл zrприблизно співпадає з нормальним розподілом.

Тоді за таблицею Z-перетворення Фішера z0,997 = 3,2957.

Знаходимо

,(1.43)

.(1.44)

Визначаємо при 95% рівні імовірності довірчі інтервали для zρ:

(1,45)

(1,46)

(1,47)

Скориставшись знову таблицями Z-перетворення Фішера, знайдемо тепер граничні значення для r:

Z(1,547) ≈ 0,991;(1.48)

Z(3,033) ≈1;(1.49)

0,991 ≤ r ≤ 1.(1.50)

Висновок: Оцінка лінійного коефіцієнту кореляції є досить точною, а значить, тіснота зв’язку між роздрібним товарообігом та рівнем доходу громадян є дуже високою.

В кінці рішення задачі побудуємо на одному графіку вихідні дані та лінію регресії (рис .1.1):

Рис. 1.1 – Вихідні дані та лінія регресії

Побудована споживча функція має вигляд:

. Розходження обґрунтованої та необґрунтованої складових дисперсії носить не випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу тісний. Високий лінійний коефіцієнт кореляції
свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу. Так як знайдений інтервал має вигляд
, тому результати регресії не відповідають якісній гіпотезі, згідно якої
тому робимо висновок про недостатню точність оцінки b. До довірчого інтервалу
входять як від’ємні, так і додатні значення, отже при 95% імовірності похибка при оцінюванні
не істотно відмінна від нуля.

ЗАДАЧА 2. ПРИКЛАД ДОСЛІДЖЕННЯ МУЛЬТИКОЛІНЕАРНОСТІ МІЖ ПОЯСНЮЮЧИМИ ЗМІННИМИ

Статистична сукупність спостережень за пояснюючими змінними моделі прибутку підприємства представлена в табл .2.1.

Таблиця 2.1 – Статистична сукупність спостережень за пояснюючими змінними моделі прибутку підприємства

Місяць Прибуток на місяць, грн.,
Фондовіддача, грн.,
Продуктивність праці, грн.,
Питомі інвестиції, грн.,
1 67 30 6 23
2 60 35 16 27
3 43 29 7 25
4 67 16 16 25
5 75 32 7 28
6 66 25 14 16
7 45 32 11 17
8 69 27 11 26
9 41 14 10 28
10 72 20 15 28
11 77 22 13 23
12 63 35 11 29
13 52 36 13 26
14 72 21 17 29
15 73 36 10 23
16 55 38 15 31
17 81 34 17 33
18 75 39 14 25
19 70 43 21 25
20 80 29 27 34

Обчислимо середні значення та стандартні відхилення пояснюючих змінних

. Для цього можна скористатись стандартними функціями MS Excel. В майстрі функцій знайдемо категорію “статистичні ” і в ній функції “СРЗНАЧ ” та “СТАНДОТКЛ ”.