2. Изменение дисперсии при умножении каждого исходного значения на константу:
3. Дисперсия объединенной группы:
где:
Среднее отклонение – это совокупность отклонений каждого значения от среднего, взятого по модулю:
Очень проста в вычислениях, но редко используется, ввиду того, что нет теоретического обоснования.
Стандартизованные данные
Часто появляется потребность оценить положение какого-либо конкретного значения по отношению к среднему в единицах стандартного отклонения
Любое множество данных можно преобразовать в такое множество, у которого среднее равно нулю, а стандартное отклонение равно единице.
Значение стандартизованных данных Zпозволяют преобразовать множество xв произвольную шкалу с удобными характеристиками среднего и стандартизованного отклонения. Сами оценки Z могут быть отрицательными или содержать дроби. Мы избавимся от этих шероховатостей, умножая стандартизованные данные на константу и прибавляем к ним константу.
сz – будет иметь стандартное отклонение
Третий момент
Асимметрия – это свойство распределения частот. На практике симметричные полигоны и гистограммы не встречаются и чтобы выявить и оценить степень асимметрии, вводят следующую меру:
В единицах стандартного отклонения асимметрия равна:
Асимметрия бывает положительной и отрицательной. Положительная сдвигается влево, а отрицательная – вправо.
Чтобы упростить вычисление Ass можно использовать следующую формулу:
Асимметрия в этом уравнении принимает значения от –3 до +3
Четвертый момент
Эксцесс – это мера крутости кривой распределения. Унимодальная кривая распределения может быть островершинной, плосковершинной, средне вершинной.
Эксцесс для стандартных данных:
Характер распределения | Величина эксцесса |
НормальноеОстровершинноеПлосковершинное | 3больше 3 и может быть очень большимбольше нуля, но меньше 3 |
Эти четыре момента составляют набор особенностей распределения при анализе данных.
Нормальное распределение
Нормальное распределение лучше всего описывается кривой созданной ДеМуавром по следующей формуле:
где U – высота кривой над осью x, t и μ – числа, которые определяют положение кривой относительно числовой оси и регулируют ее размах. Для μ=0, t=1 график принимает вид:
Свойства нормальных кривых:
Семейство нормальных кривых включают в себе все кривые, которые можно получить по данной формуле, отличающиеся друг от друга только парой значений t и μ .
1. 68% площади лежит в интервале
2. 95% площади лежит в интервале
3. 99,7% площади лежит в интервале
Если x имеет нормальное распределение со средним μ и стандартным отклонение t, то zравное
Двумерное нормальное распределение
Если при исследовании появляется вопрос о связи между двумя переменными для одного и того же объекта (например, рост и интеллект) мы говорим о двумерных связях и результаты эксперимента находят свое отражение в двумерном распределении частот.
Уравнение поверхности называется двумерным нормальным распределением (гладкая непрерывная колоколообразная поверхность)
Характеристики нормального распределения
· Распределение значений x без учета значений y есть нормальное распределение;
· Распределение значений y без учета значений x, тоже нормальное распределение;
· Для каждого фиксированного значения x значение y дают нормальное распределение с дисперсией
· Для каждого фиксированного значения yзначение xраспределяется нормально с дисперсией
· Среднее значения y для каждого отдельного значения x ложатся на переменную.
Меры изменчивости
При решении вопроса о наличии взаимосвязи (корреляции) между двумя переменными, руководствуются несколькими коэффициентами. Связь, выраженная графически, называется диаграммной рассеивания, где x – оценка IQ, y – оценка теста по математике.
Положение каждого объекта на диаграмме распределения определяется парой значений xi, yi и выражаются по отношению к мере центральной тенденции величинами
В дальнейшем будем говорить о произведении этих разностей и в том случае когда наблюдается прямая связь между этими переменными, произведение будет большим и положительным, следовательно такой же будет и сумма этих произведений
В случае обратной связи, когда большим значениям yiсоответствуют малые значения xiи наоборот, в этом случае произведение разностей будет большим и отрицательным и сумма разностей также будет большой и отрицательной.
Если между переменными не наблюдается какой-либо связи , количество положительных и отрицательных произведений примерно рано и сумма их близка к нулю. Таким образом большая положительная сумма – жесткая прямая зависимость; большая отрицательная сумма – сильная обратная зависимость; близость к нулю – отсутствие зависимости.
Недостатком этой меры является то, что ее величина зависит от числа пар переменных x участвующих в расчетах.
Чтобы избежать связь независимого состояния V групп, мы усредняем эти значения:
Частный случай, ковариация переменной с самой сабой – дисперсия
Чтобы избавить меру связи от отклонений двух групп значений: