Міністерство освіти і науки України
Південноукраїнський державний педагогічний університет
ім. К.Д.Ушинського (м. Одеса)
Кафедра математичного аналізу
Курсова робота на тему:
„Еліптичні інтеграли”
виконала
студентка 4 курсу
інституту фізики і математики
спеціальності „МІ”
Сушкова О.А.
Науковий керівник:
Аров Д.З.
Одеса 2007
План
Вступ
1.Загальні зауваження та означення
2.Допоміжні перетворення
3.Приведення до канонічної форми
4. Еліптичні інтеграли 1-го, 2-го і 3-го роду
Висновки
Література
Додатки
Вступ
У багатьох питаннях науки і техніки доводиться не по заданій функції шукати її похідну, а навпаки – відновлювати функцію по відомій її похідній.
Дамо наступне означення:
Функція F(x) на даному проміжку називається первісною функцією для функції f(x) або інтегралом від f(x), якщо на всьому цьому проміжку f(x) являється похідною для функції F(x) або, що те ж саме, f(x)dx служить для F(x) диференціалом
F’(x )= f(x) або dF(x )= f(x)dx.
Пошук для функції всіх її первісних, що називається інтегруванням її, і складає одну з задач інтегрального числення; як бачимо, ця задача являється оберненою основній задачі диференціального числення. Так, наприклад, для обчислення довжини дуги еліпса чи деякої її частини необхідно розв’язати певні еліптичні інтеграли, яким і присвячена дана курсова робота.
1. Загальні зауваження та означення
Розглянемо інтеграл виду
де y це алгебраїчна функція від х, тобто задовольняє алгебраїчному рівнянню
(тут
Дійсно, функції
задовольняють, відповідно, алгебраїчним рівнянням
Виходячи на геометричну точку зору, абелев інтеграл (1) вважають зв’язаним з тою алгебраїчною кривою, яка визначається рівнянням (2). Наприклад, інтеграл
зв’язаний з кривою другого порядку
Якщо крива (2) може бути представлена параметрично
так, що функції
До цього класу відносяться обидва вище згадані випадки. В окремому випадку, можливість раціоналізації підінтегрального виразу в інтегралі типу (3) зв’язана безпосередньо з тим фактом, що крива другого порядку унікурсальна.
Очевидно, що змінні x і t зв’язані алгебраїчним рівнянням, так що t являється алгебраїчною функцією від х. Якщо розширити клас елементарних функцій, включаючи в нього і всі алгебраїчні функції, то можна сказати, що в випадку унікурсальності кривої (2), інтеграл (1) завжди виражається через елементарні функції в кінцевому виді.
Але подібні обставини являються в деякому розумінні винятком. В загальному випадку крива (2) не унікурсальна, тоді ж, як можна довести, інтеграл (1) заздалегідь не завжди, тобто не при всякій функції R, може бути вираженим в кінцевому виді (проте не виключена можливість цього при окремих конкретних R).
З цим ми зустрічаємося уже при розгляді важливого класу інтегралів
які містять квадратний корінь з многочленів 3-ої або 4-ої степені і звичайно прилягаючих до інтегралів (3). Інтеграли виду (4) , як правило , уже не виражаються в кінцевому вигляді через елементарні функції навіть при розширеному розумінні цього терміну. Тому, знайомство з ними ми віднесли до заключного параграфу, щоб не переривати головної лінії викладення даної глави, присвяченої, головним чином вивченню класів інтегралів, що беруться в кінцевому вигляді.
Многочлени під коренем в (4) передбачаються такими, що мають дійсні коефіцієнти. Крім того, ми завжди будемо вважати, що у них не має кратних коренів, бо інакше, можна було б винести лінійний множник з під знаку кореня; питання звелося б до інтегрування виразу раніше вивчених типів, і інтеграл виразився б у кінцевому вигляді. Кінцева обставина може мати місце інколи і при відсутності кратних коренів; наприклад, легко перевірити, що
Інтеграли від виразів типу (4) взагалі називають еліптичними в зв’язку з тією обставиною, що вперше з ними зіткнулися при розв’язанні задачі про спрямування еліпсу:
Еліпс:
Зручніше буде взяти рівняння еліпса в параметричній формі
де
Обчислюючи довжину дуги еліпса від верхнього кінця малої осі до будь-якої його точки в першому квадранті, отримаємо
Таким чином, довжина дуги еліпса виражається еліптичним інтегралом 2-го роду; як вказувалося, цей факт послужив поводом для самої назви „еліптичний”.
В частковому випадку, довжина чверті обводу еліпса виражається через повний еліптичний інтеграл
Між іншим, цю назву, в прямому розумінні, відносять зазвичай лише до таких із них, що не беруться в кінцевому вигляді; інші ж, подібні тільки що приведеним, називають псевдоеліптичними.
Вивчення і табулювання ( тобто складання таблиць значень) інтегралів від виразів (4) при довільних коефіцієнтах a, b, c,…, розуміється складно. Тому звичайно бажання звести всі ці інтеграли, до небагатьох таких, до складу яких входило б по можливості менше довільних коефіцієнтів (параметрів).
Це досягається за допомогою елементарних перетворень, які ми розглянемо в наступних пунктах.
2. Допоміжні перетворення
Зазначимо перш за все, що достатньо обмежитися випадком многочлена 4-ї степені під коренем, так як до нього легко приводиться випадок, коли під коренем многочлен 3-ї степені.
Розглянемо, взагалі, алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами)
При достатньо великих по абсолютній величині значеннях xмногочлен має знак старшого члена, тобто при додатному x – знак
Дійсно, многочлен 3-ї степені
Підстановка
В першу чергу ми будемо розглядати лише диференціали, що мають корінь із многочленів 4-ї степені.
По відомій теоремі алгебри, многочлен четвертої степені з дійсними коефіцієнтами може бути представленим у виді добутку двох квадратних трьохчленів з дійсними коефіцієнтами: