Если в уравнении (2.4)
которую перепишем в виде
В этом случае обращается диагональная матрица, требующая лишь 0(N) арифметических операций.
Условием устойчивости схемы (2.4)-(2.6) будет
Отсюда видно, что условием устойчивости явной схемы будет
Из условия (2.7) видно, что схемы о
Если имеем уравнение с переменными коэффициентами, т.е.
то
Условие устойчивости схемы (2.4)-(2.6) с эллиптическим оператором (2.8) имеет вид
Отсюда получаем условие устойчивости явной схемы в виде
Условие устойчивости (2.9) налагает весьма жесткие ограничения на шаг по времени
Из условия (2.9) видно, что выбор шага
Чисто неявная схема (
В неявных схемах придется решать системы алгебраических уравнений, как правило, высокого порядка и с разреженными матрицами. Итак, реализация систем алгебраических уравнений для многомерных задач в общем случае представляется невозможной из-за громоздкости порядка системы (проблема памяти ЭВМ), большого объема арифметических операций.
Таким образом, лучшими качествами явной и неявной схем являются количество арифметических операций, равное 0(N) в явной схеме, и абсолютная устойчивость неявной схемы, недостатками - условная устойчивость явной схемы и большое количество арифметических операций в неявной схеме. Отсюда ясно, что если построим разностные схемы, сочетающие в себе лучшие качества обычных явных и неявных разностных схем, то можно эффективно решать многомерные задачи математической физики.
Итак, безусловная (абсолютная) устойчивость и независимость количества арифметических операций, требуемые для вычисления приближенного решения задачи в отдельной точке сетки от общего количества узлов сеточной области, определяют класс экономичных схем.
Уравнение (2.1) можно аппроксимировать по-другому, стремясь упростить вычислительный процесс. Уравнение (2.1) аппроксимируем разностным уравнением
В этой схеме аппроксимация по первому направлению неявная, а по всем остальным - явная.
Реализация этой схемы идет по направлению
2. Достижением вычислительной математики является разработка экономичных методов решения многомерных краевых задач математической физики. Первые экономичные схемы были схемами в дробных шагах по времени t. Они предложены и обоснованы в 1955 г. одновременно американскими учеными D.W. Peacemdn , H.H.Rachford и J.Douglas.
Характерной особенностью экономичных схем этого периода является то, что все они основывались на идее ведения дробных моментов времени и поэтапном решении р задач в промежутках
В 1965г. А. А. Самарский предложил и обосновал экономичный метод без привлечения вспомогательной сетки
Любая разностная схема, моделирующая исходную дифференциальную краевую задачу, должна удовлетворять данным условиям устойчивости, аппроксимации на решение исходной задачи и простоты. Если эти требования для одномерной разностной схемы выполняются сравнительно легко, то при переходе к двумерной (многомерной) задаче возникают значительные трудности.
Перед вычислительной математикой встала сложная задача построения экономичных методов решения многомерных задач математической физики. Стало невозможным разрешить эту проблему на базе однородных разностных схем, где при переходе от одного временного слоя к другому одновременно удовлетворяются условия устойчивости и аппроксимации. При этом, конечно, формула получается более простой, но схема становится менее гибкой и имеет в своем распоряжении небольшое количество произвольных параметров, что создает основные трудности выполнения вышеописанных требований. Экономичные схемы, расчленяя переход от нижнего слоя к верхнему на ряд промежуточных этапов и не требуя на каждом этапе обязательного выполнения свойств аппроксимации исходного уравнения и устойчивости, имеют в своем распоряжении набор параметров, что дает возможность выбора наиболее эффективного вычислительного алгоритма.
Пусть имеем уравнение теплопроводности
Разрабатывая в 1955г. первые экономичные схемы переменных направления, Писмен, Рэкфорд и Дуглас имели в виду упростить решение алгебраической системы уравнений высокого порядка, сохранить абсолютную устойчивость и приемлемую точность, тем самым удовлетворили до некоторой степени вышеописанные требования. Идея метода заключается в следующем. Уравнение (2.2) аппроксимируется разностным уравнением