Смекни!
smekni.com

Теоремы сложения и умножения вероятностей, вероятность появления хотябы одного события (стр. 4 из 4)

Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе - и на первых шагах эти вероятности будут взяты "из головы" или в лучшем случае из опыта управления другими системами. Но по мере "жизни" системы нельзя упускать из виду возможность "коррекции" управления - использования всего накапливаемого опыта.

4.3 Схемы случайных событий и законы распределения случайных величин

Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ.

Эти распределения иногда называют "теоретическими", поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п.

Таких, классических законов распределений достаточно много, хотя "штат" их за последние 30..50 лет практически не пополнился. Необходимость знакомства с этими распределениями для специалистов вашего профиля объясняется тем, что все они соответствуют некоторым "теоретическим" схемам случайных (большей частью - элементарных) событий.

Как уже отмечалось, наличие больших массивов взаимосвязанных событий и обилие случайных величин в системах экономики приводит к трудностям априорной оценки законов распределений этих событий или величин. Пусть, к примеру, мы каким-то образом установили математическое ожидание спроса некоторого товара. Но этого мало - надо хотя бы оценить степень колебания этого спроса, ответить на вопрос - а какова вероятность того, что он будет лежать в таких-то пределах? Вот если бы установить факт принадлежности данной случайной величины к такому классическому распределению как т. н. нормальное, то тогда задача оценки диапазона, доверия к нему (доверительных интервалов) была бы решена безо всяких проблем.

Доказано, например, что с вероятностью более 95% случайная величина X с нормальным законом распределения лежит в диапазоне - математическое ожидание Mx плюс/минус три среднеквадратичных отклонения SX.

Так вот - все дело в том к какой из схем случайных событий классического образца ближе всего схема функционирования элементов вашей большой системы. Простой пример - надо оценить показатели оплаты за услуги предоставления времени на междугородние переговоры - например, найти вероятность того, что за 1 минуту осуществляется ровно N переговоров, если заранее известно среднее число поступающих в минуту заказов. Оказывается, что схема таких случайных событий прекрасно укладывается в т. н. распределение Пуассона для дискретных случайных величин. Этому распределению подчинены почти все дискретные величины, связанные с так называемыми "редкими" событиями.

Далеко не всегда математическая оболочка классического закона распределения достаточно проста. Напротив - чаще всего это сложный математический аппарат со своими, специфическими приемами. Но дело не в этом, тем более при "повальной" компьютеризации всех областей деятельности человека. Разумеется, нет необходимости знать в деталях свойства всех или хоть какой-то части классических распределений - достаточно иметь в виду саму возможность воспользоваться ими.

Таким образом, при системном подходе к решению той или иной задачи управления (в том числе и экономического) надо очень взвешено отнестись к выбору элементов системы или отдельных системных операций. Не всегда "укрупнение показателей" обеспечит логическую стройность структуры системы - надо понимать, что заметить близость схемы событий в данной системе к схеме классической чаще всего удается на самом "элементарном" уровне системного анализа.

Завершая вопрос о распределении случайных величин обратим внимание на еще одно важное обстоятельство: даже если нам достаточно одного единственного показателя - математического ожидания данной случайной величины, то и в этом случае возникает вопрос о надежности данных об этом показателя.

В самом деле, пусть нам дано т. н. выборочное распределение случайной величины X (например - ежедневной выручки в $) в виде 100 наблюдений за этой величиной. Пусть мы рассчитали среднее Mx и оно составило $125 при колебаниях от $50 до $200. Попутно мы нашли SX, равное $5. Теперь уместен вопрос: а насколько правдоподобным будет утверждение о том, что в последующие дни выручка составит точно $125? Или будет лежать в интервале $120..$130? Или окажется более некоторой суммы - например, $90?

Вопросы такого типа чрезвычайно остры - если это всего лишь элемент некоторой экономической системы (один из многих), то выводы на финише системного анализа, их достоверность, конечно же, зависят от ответов на такие вопросы.

Что же говорит теория, отвечая на эти вопросы? С одной стороны очень много, но в некоторых случаях - почти ничего. Так, если у вас есть уверенность в том, что "теоретическое" распределение данной случайной величины относится к некоторому классическому (т. е. полностью описанному в теории) типу, то можно получить достаточно много полезного.

С помощью теории можно найти доверительные интервалы для данной случайной величины. Если, например, уже доказано (точнее - принята гипотеза) о нормальном распределении, то зная среднеквадратичное отклонение можно с уверенностью в 5% считать, что окажется вне диапазона (Mx - 3·Sx)......(Mx+3·Sx) или в нашем примере выручка с вероятностью 0.05 будет <$90 или >$140. Надо смириться со своеобразностью теоретического вывода - утверждается не тот факт, что выручка составит от 90 до 140 (с вероятностью 95%), а только то, что сказано выше.

Если у нас нет теоретических оснований принять какое либо классическое распределение в качестве подходящего для нашей СВ, то и здесь теория окажет нам услугу - позволит проверить гипотезу о таком распределении на основании имеющихся у нас данных. Правда - исчерпывающего ответа "Да" или "Нет" ждать нечего. Можно лишь получить вероятность ошибиться, отбросив верную гипотезу (ошибка 1 рода) или вероятность ошибиться приняв ложную (ошибка 2 рода).

Даже такие "обтекаемые" теоретические выводы в сильной степени зависят от объема выборки (количества наблюдений), а также от "чистоты эксперимента" - условий его проведения.

ЗАКЛЮЧЕНИЕ

Теория вероятностей – это математическая наука, изучающая математические модели массовых случайных явлений. В теории вероятностей используются результаты и методы многих областей математики (комбинаторики, математического анализа, алгебры, логики и т. п.). Однако теория вероятностей обладает некоторым своеобразием, поскольку она очень тесно связана с различными приложениями, причем приложения эти не столь привычны, как, например, приложения алгебры или дифференциальных уравнений. Задачи теории вероятностей также необычны и часто имеют нематематическую постановку. Это в первую очередь объясняется тем, что зарождение теории вероятностей связано с комбинаторными задачами азартных игр. Азартные игры трудно считать серьезным занятием. Но именно они привели к задачам, которые не укладывались в рамки существовавших математических соотношений и стимулировали тем самым поиск новых понятий, подходов и идей.

Подобно другим математическим наукам, теория вероятностей развивалась из потребностей практики и представляла собой прикладную дисциплину. В связи с этим ее понятия и выводы имели характерные черты тех областей знаний, в которых они были получены. Лишь постепенно выкристаллизовалось то общее, что присуще вероятностным схемам, независимо от области их приложения и что позволило превратить теорию вероятностей в надежный, точный и эффективный метод познания.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972, 1977.

3. Ежова Л.Н. Теория вероятностей и математическая статистика: Основы математики для экономистов. Вып. 9: Учеб. Пособие. – Иркутск: Изд-во ИГЭА, 2000.

4. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1991.

5. Теория вероятностей: Учебное пособие / Ежова Л.Н., Абдуллин Р.З., Калашникова Л.С., Никулина С.И., Леонова О.В.. – Иркутск: изд-во ИГЭА. – 1996.

6. Анализ и диагностика финансово-хозяйственной деятельности предприятия. Табурчак П.П., Викуленко А.Е., Овчинникова Л.А. и др.: Учеб. пособие для вузов / Под ред. П.П. Табурчака, В.М. Туина и М.С Сапрыкина. - Ростов н/Д: Феникс, 2002.

7. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. - 4- изд., доп. и перераб. - М.: Финансы и статистика, 2001.

8. Бамина О.Э., Спирин А.А. Общая теория статистики. Изд-во Финансы и статистика, 2005. ― 440 с.

9. Бочаров.В.Б. Финансовый анализ. - СПб: Питер, 2004. - 240 с.

10. Гинсбург А.И. Экономический анализ. - Спб.: Питер, 2003. - 480 с.

11. Ефимова М.Р., Румянцев В.Н., Петрова Е.В. Общая теория статистики. Учебник. ― М.: Инфра-М, 2005, с. 94.

12. Завьялова З.М. Теория экономического анализа. Курс лекций. - М.: Финансы и статистика, 2002.