Смекни!
smekni.com

Теоремы сложения и умножения вероятностей, вероятность появления хотябы одного события (стр. 2 из 4)


2. Теорема сложения вероятностей

В любых сколь угодно сложных расчетах по теории вероятностей в той или иной форме используют две теоремы: теорему сложения и теорему умножения вероятностей.

Теорема 1. Вероятность суммы конечного числа попарно несовместных событий равна сумме их вероятностей.

Доказательство. Докажем теорему для двух событий, т.е. покажем, что если С=А+В и АВ=Ø , то

Р(С)=Р(А+В)=Р(А)+Р(В), (1.3)

Для простоты рассуждений будем опираться на классическое определение вероятности. Пусть множество элементарных исходов испытания или опыта Ω дискретно и состоит из n равновозможных исходов, т. е.

= n; пусть событию А благоприятствуют m′ исходов,
= m′; событию В – m′′ исходов,
= m′′ . Так как А и В несовместны, то среди исходов, благоприятствующих наступлению этих событий, нет совпадающих. Поэтому событию С=А+В будет благоприятствовать m′ + m′′ исходов,
= m′ + m′′. Тогда по классическому определению

Последнее выражение можно также представить в виде


Таким образом, соотношение (1.3) доказано.

Методом математической индукции можно показать справедливость теоремы для любого конечного числа попарно несовместных событий:

если

Ø,

Пример 4. Мишень состоит из концентрических окружностей. Вероятность попадания в первый, центральный круг – 0,05, во второй (средний) – 0,20 и наружное кольцо – 0,50. Какова вероятность попадания в мишень при одном выстреле?

Решение. Искомое событие A произойдет, если произойдет хотя бы одно из событий: A1={попадание в первый, центральный круг}, A2 ={попадание в среднее кольцо}, A3 = {попадание в наружное кольцо} , т. е. событие A представимо в виде суммы событий A1 ,A2 ,A3 , причем слагаемые события в этой сумме попарно несовместны и вероятности их наступления заданы. Тогда по теореме сложения получим

P(A) = P(A1 + A2 + A3) = P(A1)+ P(A2)+ P(A3) = 0,05+ 0,20+ 0,50 = 0,75.

Из теоремы сложения следует практически важное следствие или свойство вероятностей противоположных событий.

Следствие. Вероятности двух взаимно противоположных событий дополняют друг друга до единицы:

, или вероятность события
, противоположного событию A, равна

, (1.4)

Действительно, так как A +

= Ω и A
= Ø, то по формуле (1.3) P(A +
) = P(A) + P(
) = P(Ω ) =1. Отсюда P(
) =1 − P(A).

Теорема 2. (обобщенная теорема сложения). Если событие С представимо в виде суммы двух событий А и В, где A и В – любые события из одного поля, то

Р(С)=Р(А+В)=Р(А) + Р(В) – Р(АВ), (1.5)


3. Теорема умножения вероятностей

В основе определения вероятности события лежит некоторый комплекс условий G, который остается неизменным при всех вариантах условий испытаний. Но, кроме этого, для того, чтобы установить характер соотношений между событиями А и В, приходится наблюдать происхождение или непроисхождение события А то без всяких дополнительных условий, то при условии, что уже произошло событие В. Если вероятность события А подсчитывается без каких-либо дополнительных условий или ограничений, то ее называют безусловной вероятностью данного события и записывают Р(А). Вероятность события А, найденная при условии, что произошло некоторое другое событие В, называется условной и обозначается Р(А/В) либо

.

Условные вероятности обладают всеми свойствами безусловных вероятностей и находятся по тем же формулам.

Теорема умножения вероятностей. Вероятность произведения двух событий А и В равна произведению безусловной вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло:

Р(АВ)=Р(А)Р(В/А)=Р(В)Р(А/В) (1.7)

Доказательство.

Для простоты будем также опираться на классическое определение вероятности. Пусть множество Ω конечно и состоит из n равновозможных, попарно несовместных исходов испытания или опыта,

= n; событие А состоит из m исходов,
= m; m ≤ n; событие В – из k исходов,
= k, k ≤ n; событие АВ – из r исходов,
= r, r ≤ n, r ≤ k, r ≤ m, т. е. событиям А, В и АВ будут благоприятствовать m, k и r равновозможных исходов соответственно. Найдем условную вероятность события А при условии, что событие В произошло: Р(А/В)=r/k.

Поделим числитель и знаменатель этой дроби на n.

Отсюда Р(АВ)=Р(В)Р(А/В).

В наших рассуждениях мы могли поменять события А и В. Меняя ролями А и В, получим Р(АВ)=Р(А)Р(В/А). Таким образом, равенство (1.7) доказано. Теорема умножения распространяется и на большее, чем два число сомножителей

(1.8)

Пример 5. На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны?

Решение. Используем для решения задачи формулу умножения вероятностей (1.7) и непосредственный подсчет по классическому определению, т. е. решим ее двумя способами.

1-й способ: событие А = {первый взятый наугад заказ – внутри страны}, В = {второй, тоже взятый наугад заказ – внутри страны}. Нам необходимо найти вероятность Р(АВ), поэтому по формуле (1.7)

Р(АВ)=Р(А)Р(В/А)=(5/8)(4/7)=5/14.


2-й способ: событие А ={два выбранных наугад заказа – внутри страны}. По классическому определению

.

4. Случайные события

4.1 Случайные события и величины, их основные характеристики

При анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:

продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;

деньги, с единственным способом описания - суммой;

информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.

Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем - количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее - а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный - наша цель управлять, а по образному выражению "управлять - значит предвидеть".

Итак, без предварительной информации, знаний о количественных показателях в системе нам не обойтись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе).

Для случайных величин (далее - СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ - дискретная или непрерывная это делается по разному.

Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.

Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению - которое и есть вероятность этого значения.

К понятию вероятности значения дискретной СВ можно подойти и иным путем - через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике - событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1 называют достоверными, а с вероятностью 0 - невозможными.

Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.