Означення.Прямокутник - це параллелограм, у якого всі кути прямі.
Означення.Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні. Ці паралельні сторони називаються основагиями трапеції. Дві інші сторони називаються бічними сторонами.
Означення.Трикутником називається фігура . яка складається із трьох крапок, що не лежать на одній прямій, і трьох відрізків , попарно з'єднуючі ці точки. Точки називаються вершинами трикутника , а відрізки - сторонами.
4. Про площу прямокутника
Теорема. Площа прямокутника зі сторонами
На підставі вищевикладених аксіом і теорем, доведемо теореми про площі елементарних багатокутників методом рівновеликих і рівноскладених елементів багатокутників.
а) Площа паралелограма
Теорема. Площа паралелограма дорівнює добутку його основи на висоту.
Рис.2.3 Дано: ABCD-Паралелограм, AD-підстава, BH-Висота
Довести:
SABCD=AD x BH
Доведення
1. Перекроїмо паралелограм у прямокутник. Для цього розріжемо його по висоті BH , і трикутник ABH прикладемо праворуч як показано на рис.2.3. Одержимо прямокутник HBCH1 , рівноскладений з паралелограмом ABCD. Але рівноскладені фігури є рівновеликими, тобто SHBCH1=SABCD .
2. SHBCH1=BC x BH. Але BC=AD по властивості паралелограма.
Тоді SABCD=AD x BH. Теорема доведена.
б) Площа трикутника
Теорема. Площа трикутника дорівнює половині добутку основи на висоту.
Рис.2.4. Дано: ABC-Трикутник, AC- основа, BH- висота.
Довести:
SABC = ? AC x BH
Доведення
Перекроїмо трикутник у паралелограм. Для цього проведемо середню лінію MN і розріжемо трикутник ABC на дві частини. Трикутник MNC прикладемо до відрізка BM як показано на рис.2.4. Одержимо паралелограм ABDN, рівноскладений із трикутника ABC, а отже й рівновеликий. Тоді SABDN=SABC
SABDH=AN x BH. Але AH=1/2 AC, тому що N-Середина AC.
Отже SABC=1/2 AC x BH. Теорема доведена.
в) Площа трапеції
Теорема.Площа трапеції дорівнює добутку напівсуми її підстав на висоту.
Рис.2.5 Дано: ABCD-Трапеція, AD і BC- основи, BH-Висота
Довести:
SABCD=1/2 (AD + BC) x BH
Доведення
Перекроїмо трапецію в трикутник. Для цього розріжемо її по відрізку BM, де M- середина сторони CD.Трикутник BCM прикладемо до відрізка MD як показано на рис.2.5. Одержимо трикутник ABN рівноскладений із трапецією ABCD, а отже й рівновеликий , тобто SABN=SABCD
SABN=1/2 AN x BH, (2.1)
Але AN =AD + DN, а DN = BC.
Звідки AN=AD + BC.
Підставимо в (2.1), одержимо SABCD=1/2 (AD + BC) x BH. Теорема доведена.
2.2 Розрахунок площі несиметричного п'ятикутника методом побудови рівновеликого трикутника
Дано довільний 5-кутник
Рис.2.6 Перебудова п’ятикутника в равновеликий трикутник
Перебудовуємо його в рівновеликий трикутник :
1.Будуємо діагональ AC, з'єднуючи точки A й C усередині багатокутника
2.Продовжуємо по стороніAE пряму F-K
3.Через точку Bбудуємо пряму B-F, що паралельна діагоналі AC.
4.Із точки C в точку F перетинання прямих BF і FK проводимо відрізок CF
5.Оскільки
- їхні висоти однакові й дорівнюють відстані по перпендикуляру між паралельними прямими;
-площі цих трикутників рівні, оскільки розраховуються як половина добутку висоти трикутника на його основу.
6.Через точки С й Eпроводимо другу діагональ п'ятикутника.
7.Через точку D будуємо прямуD-K паралельну другій діагоналі СE
8.Із точки C проводимо відрізок CK у точку K перетинання прямих D-K і F-K.
9.Трикутник CED і побудований трикутник CEK розташовані між паралельними прямими CE й DKмають загальну основу CE – рівновеликі , тобто мають рівну площу.
10.Отриманий трикутник
РОЗДІЛ ІІІ. Розрахунок площ невипуклих багатокутників методами рівновеликості та методами використанням координатних підходів аналітичної геометрії
3.1 Застосування методу рівновеликості для розрахунку площ багатокутників
Кожному багатокутнику можна поставити у відповідність позитивне число S(площа), так щоб виконувалися наступні властивості (аксіоми) [2]:
Іншими словами , площа - це функція, задана на множині багатокутників, що приймає тільки позитивні значення й задовольняє умови I,II,III
Теорема: Доведемо ( виведемо із властивостей I,II,III), що площа прямокутника дорівнює добутку довжин його сторін [4].
Нехай
A.Якщо
Рис. 3.1
Б. Нехай довжини сторін прямокутника виражені кінцевими десятковими дробами , скажемо:
де
Візьмемо одиничний квадрат і кожну його сторону розділимо на
Рис.3.2 Рис.3.3
Числа
В. Розглянемо тепер загальний випадок , коли
Візьмемо раціональні наближення чисел по недоліку , тобто
При необмеженому збільшенні n ліва й права частини рівності прагнуть до того самого дійсного числа