Смекни!
smekni.com

Исследование математических операций 2 (стр. 14 из 28)

Spq = cpq - ( up + vq ).

Так, например, для цикла x21,x23,x13,x11,x21 в рассмотренной выше задаче имеем

.

Для базисных клеток сумма потенциалов строки и столбца, в которых находится эта клетка, равна тарифу, соответствующему этой клетке; если же клетка для неизвестного xpq свободная, то сумму потенциалов

(3.7)

называют косвенным тарифом этой клетки. Следовательно, алгеб­раическая сумма тарифов для свободной клетки xpq равна разности ее настоящего (“истинного”) и косвенного тарифов:

(3.8)

Из (3.8) следует, что если косвенный тариф для данной свобод­ной клетки больше её истинного тарифа, то алгебраическая сумма тарифов по циклу, соответствующему этой клетке, будет отрица­тельна; если же косвенный тариф меньше истинного, то алгебраи­ческая сумма тарифов положительна, и, наконец, если косвенный тариф равен истинному, то алгебраическая сумма тарифов равна нулю.

Потенциалы можно найти из системы равенств (3.6), рассматри­вая их как систему (m + n - 1) уравнений с m+n неизвестными. Так как неизвестных здесь на единицу больше, чем уравнений, то, по крайней мере, один из потенциалов мы можем выбрать произвольно, положив, например, u1 = 0; тогда остальные потенциалы легко опре­деляются из уравнений (3.6).

Например, для плана, полученного по диагональному методу в рассмотренной выше задаче, имеем

Система содержит семь уравнений с восемью неизвестными. Выбирая произвольно значение

, находим последовательно из пер­вых трех уравнений значения

, затем из четвертого уравнения –
, из пятого уравнения –
, из шестого уравнения
и, наконец, из седь­мого уравнения –
.

Положив, например, u1 = 0 , получаем значения потенциалов:

Найдем теперь косвенные тарифы для свободных клеток и сравним их с истинными тарифами:

Для клеток с неизвестными x21 и x32 косвенные тарифы больше истинных. Следовательно, для них мы будем иметь отрицательные алгебраические суммы тарифов:

Значение S21 = -15 мы уже имели раньше, вычисляя алгебраиче­скую сумму тарифов для этой клетки непосредственно по циклу.

Замечание 1. Подсчитывая косвенные тарифы как суммы соответ­ствующих потенциалов, полезно не пропускать и клетки с базисны­ми неизвестными (заполненные клетки). Для этих клеток сумма потенциалов равна истинному тарифу; последнее может служить проверкой правильности найденных значении потенциалов.

Замечание 2. Можно показать, что если сумму всех затрат по данному плану перевозок выразить черех свободные неизвестные, то коэффициент при каждом из таких неизвестных будет равен алгебраической сумме тарифов по циклу, соответствующему ей в таблице перевозок. Это еще раз подтверждает, что пересчет по циклам является специфической формой применения симплекс-метода к решению транспортной задачи.

Назад | Содержание | Далее

3.4. Критерий оптимальности базисного решения транспортной задачи. Методы отыскания оптимального решения

Из сказанного в предыдущем пункте вытекает следующий кри­терий оптимальности базисного решения транспортной задачи: если для некоторого базисного плана перевозок алгебраические суммы тарифов по циклам для всех свободных клеток неотрицательны, то этот план оптимальный.

Отсюда вытекает способ отыскания оптимального решения транспортной задачи, состоящий в том, что, имея некоторое базис­ное решение, вычисляют алгебраические суммы тарифов для всех свободных клеток. Если критерий оптимальности выполнен, то дан­ное решение является оптимальным; если же имеются клетки с отрицательными алгебраическими суммами тарифов, то переходят к новому базису, производя пересчет по циклу, соответствующему одной из таких клеток. Полученное таким образом новое базисное решение будет лучше исходного – затраты на его реализацию будут меньшими. Для нового решения также проверяют выполнимость критерия оптимальности и в случае необходимости снова совершают пересчет по циклу для одной из клеток с отрицательной алгебраиче­ской суммой тарифов и т. д.

Через конечное число шагов приходят к искомому оптимальному базисному решению.

В случае если алгебраические суммы тарифов для всех свобод­ных клеток положительны, мы имеем единственное оптимальное решение; если же алгебраические суммы тарифов для всех свобод­ных клеток неотрицательны, но среди них имеются алгебраические суммы тарифов, равные нулю, то оптимальное решение не единствен­ное: при пересчете по циклу для клетки с нулевой алгебраической суммой тарифов мы получим оптимальное же решение, но от­личное от исходного (затраты по обоим планам будут одина­ковыми).

В зависимости от методов подсчета алгебраических сумм тари­фов для свободных клеток различают два метода отыскания опти­мального решения транспортной задачи:

1. Распределительный метод. При этом методе для каждой пустой клетки строят цикл и для каждого цикла непосредственно вычисляют алгебраическую сумму тарифов.

2. Метод потенциалов. При этом методе предварительно находят потенциалы баз и потребителей, а затем вычисляют для каждой пустой клетки алгебраическую сумму тарифов с помощью потен­циалов.

Преимущества метода потенциалов по сравнению с распредели­тельным методом состоят в том, что отпадает необходимость построения циклов для каждой из пустых клеток и упрощается вычисление алгебраических сумм тарифов. Цикл строится только один – тот, по которому производится пересчет.

Применяя метод потенциалов, можно говорить не о знаке алгебраических сумм тарифов, а о сравнении косвенных тарифов с истинными. Требование неотрицательности алгебраических сумм тарифов заменяется условием, что косвенные тарифы не превосхо­дят истинных.

Следует иметь в виду, что потенциалы (так же как и циклы) для каждого нового базисного плана определяются заново.

Назад | Содержание | Далее

3.5. Усложненные задачи транспортного типа

Выше рассмотрена классическая транспортная задача, на которой показано, как используется метод потенциалов для нахождения оптимального плана. В экономике предприятия такие задачи встречаются крайне редко. Обычно при составлении экономико-математической модели задачи транспортного типа приходится вводить целый ряд дополнительных ограничений, а затем пользоваться методом потенциалов.

Ряд экономических задач легко сводимы к транспортной задаче. Рассмотрим наиболее часто встречающиеся ситуации в экономике предприятия.

1. Отдельные поставки от определенных поставщиков некоторым потребителям должны быть исключены (из-за отсутствия необходимых условий хранения, чрезмерной перегрузки коммуникаций и т.д.). Это ограничение требует, чтобы в матрице перевозок, содержащей оптимальный план, определенные клетки оставались свободными. Последнее достигается искусственным завышением затрат на перевозки cij в клетках, перевозки через которые следует запретить. При этом производят завышение величины cij до таких значений, которые заведомо больше всех и с которыми их придется сравнивать в процессе решения задачи.

2. На предприятии необходимо определить минимальные суммарные затраты на производство и транспортировку продукции. С подобной задачей сталкиваются при решении вопросов, связанных с оптимальным размещением производственных объектов. Здесь может оказаться экономически более выгодным доставлять сырье из более отдаленных пунктов, но зато при меньшей его себестоимости. В таких задачах за критерий оптимальности принимают сумму затрат на производство и транспортировку продукции.

3. Ряд транспортных маршрутов, по которым необходимо доставить грузы, имеют ограничения по пропускной способности. Если, например, по маршруту AiBj можно провести не более q единиц груза, то Bj -й столбец матрицы разбивается на два столбца -

и
. В первом столбце спрос принимается равным разности между действительным спросом
и ограничением q:
, во втором – равным ограничению q, т.е.

. Затраты cij в обоих столбцах одинаковы и равны данным, но в первом столбце
, в клетке, соответствующей ограничению i, вместо истинного тарифа cij ставится искусственно завышенный тариф M (клетка блокируется). Затем задача решается обычным способом.