Сравнение б.м. и б.б. функций
Две б.м. функций сравниваються между собой с помощью их отношения(сумма, разность и произведение).
Рассмотрим правило сравнения б.м. функций:
*Пусть при х®х0 функции a(х) и b(х) являються б.м., т.е. Lima(х){при х®х0}=0 и Limb(х){при х®х0}=0, тогда Правила:1)Если Lima(х)/b(х){при х®х0}=0, то a(х) – б.м. более высокого порядка, чем b(х). 2)Если Lima(x)/b(х){при х®х0}=А¹0, то a(х) иb(х) – б.м. одного порядка. 3)Если Lima(х)/b(х){при х®х0}=1, то a(х) и b(х) – эквивалентные б.м.. Иногда нужно оценивать как высок порядок б.м. более высокого порядка, поэтому 4)Если Lima(х)/
Замечания: Для сравнения б.м. функций, при х®∞, х®+\-∞, х®х0+\-. Существует аналогичное правило.
Замечательные пределы
*1-й замечательный предел.
Возьмем круг радиуса 1, обозначим
радианную меру угла MOB через Х.
Пусть 0 < X < π/2. На рисунке |АМ| = sin x, дуга МВ численно равна центральному углу Х, |BC| = tg x. Тогда
Разделим все на
Т.к.
*2-й замечательный предел.
Пусть х→∞. Каждое значение х заключено между двумя положительными целыми числами:
Если x→∞, то n→∞, тогда
По признаку о существовании пределов:
Теоремы о функциях, непрерывных на отрезке.
Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.
Функцию
Теорема 1. Функция, непрерывная на отрезке [a,b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
*Теорема утверждает, что если функция
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a,b). Действительно, если рассмотреть функцию
Также теорема перестаёт быть верной для разрывных функций. Приведите пример.
Следствие. Если функция
Теорема 2. Пусть функция
Эта теорема имеет простой геометрический смысл: если точки графика непрерывной функции
Эта теорема допускает следующее обобщение.
Теорема 3 (теорема о промежуточных значениях). Пусть функция
Таким образом, непрерывная функция, переходя от одного своего значения к другому, обязательно проходит через все промежуточные значения. В частности,
Следствие. Если функция
Классификация точек разрыва.
Разрывы функции
1.Точки, где функция f(x) не является непрерывной, называются точками разрыва функции f(x).
Для классификации точек разрыва рассмотрим предел слева
* Устранимый разрыв.
Он имеет место, когда выполнено условие
В данном случае достаточно изменить значение функции в точке x0, чтобы разрыва не стало.
* Разрыв первого рода (скачок).
Разрыв первого рода (скачок) получается тогда, когда односторонние пределы
* Разрыв второго рода.
Если хотя бы один из
Вид разрывов второго рода очень разнообразен. Пример такого разрыва приведен на рис. 2.3. На нем изображен случай, когда f(x0 – 0) конечен, а f(x0 + 0) равен +¥.
Геометрический смысл производной.
KN=Dy, MK=Dx
DMNK/tg2=Dy/Dx
вычислим предел левой и правой части:
limtga=lim(Dy/Dx) Dx®0
tga0=y`
a®a0
При Dx®0 секущая MN®занять положение касательной в точке M(tga0=y`, a®a0)
Геометрический смысл производной заключается в том, что есть tg угла наклона касательной, проведенной в точке x0.
Связь между непрерывностью и дифференцируемостью функции
*Если функция f ( x ) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.
*С л е д с т в и е . Если функция разрывна в некоторой точке, то она не имеет производной в этой точке.