МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
математический факультет
Кафедра алгебры и геометрии
Конечные группы со сверхразрешимыми подгруппами четного индекса.
Курсовая работа
Исполнитель:
студентка группы H.01.01.01 М-31
Зелюткина В.И.
Научный руководитель: профессор,
доктор физико-математических наук,
профессор кафедры алгебры и геометрии
Монахов В.С.
Гомель 2005
Содержание
1. Конечные группы со сверхразрешимыми подгруппами четного индекса
2. Конечные группы со сверхразрешимыми подгруппами непримарного индекса
3. О неразрешимых группах с заданными подгруппами непримарного индекса
Данная курсовая работа представлена в виде трех параграфов. В первом параграфе рассматриваются конечные группы со сверхразрешимыми подгруппами четного индекса. Здесь представлены:
A. Пусть - конечная группа и
. Тогда и только тогда в группе
все подгруппы четного индекса сверхразрешимы, когда выполняется одно из следующих утверждений:
1)
2)
3)
1. - наследственный гомоморф, т.е. каждая подгруппа и каждая факторгруппа группы
также принадлежит
.
2.
3.
4.
5.
6.
Лемма 7.
8.
9. для
.
Во второй - конечные группы со сверхразрешимыми подгруппами непримарного индекса. Здесь представлены:
B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:
1)
2)
C.
1.
2.
3.
4. группа дисперсивна по Оре, если в ней все подгруппы Шмидта сверхразрешимы.
5. конечная группа со сверхразрешимыми подгруппами непримарного индекса не более чем трипримарна.
6. группа порядка
7. разрешимая группа со сверхразрешимыми подгруппами непримарного индекса дисперсивна.
8.