6. Матрица, все элементы которой равны нулю называется нулевой матрицей и обозначается символом Ø. А+Ø=А.
Основные свойства операций над матрицами:
А+В = В+А; А+(В+С) = А+В+С; (α +β)А = αА+βА; α(А+В) = αА + αВ; (А+В)*С=АС+ВС; С(А+В)=СА+СВ; (αА)В=α(АВ); (АВ)*С=А(ВС); (АВ)т=Вт Ат.
Понятие матрицы, алгебра матриц имеют чрезвычайно важные значение в приложениях математики к экономике и другим наукам, т.к. позволяют записывать значительную часть математических моделей в достаточно простой, а главное компактной форме.
Пример. Каждое из трех предприятий производить продукцию двух видов. Количество продукции каждого вида в тоннах за рабочую силу на каждом предприятий можно задать матрицей А= 2 1 3
1 3 4 ,
Стоимость одной тонны продукции каждого вида задана матрицей В= (10 15). На какую сумму произведет всю продукцию каждое предприятие за рабочую смену?
Решение: В*А= (10 15)* 2 1 3 =(35 55 90)
1 3 4
Ответ: Первое предприятие произведет продукции на 35 тыс. руб.
Второе – на 55 тыс. руб.
Третье – на 90 тыс. руб.
Тема 8. Понятие множества.
Понятие множества принадлежит к числу первичных, не определяемых через более простые.
Под множеством понимается совокупность (собрание, набор) некоторых объектов. Объекты, которые образуют множества называются элементами, или точками, этого множества.
Примерами множеств являются: множество студентов данного ВУЗа, множество предприятий некоторой отрасли, множество натуральных чисел и т.п.
Множество обозначаются прописными буквами, а их элементы строчными. Если а есть элемент множества А, то используется запись а Є А. Если в не является элементом множества А, то пишут в Є А.
Множество, не содержащее ни одного элемента, называется пустым и обозначается Ø. Например, множество действительных корней уравнения х2+1=0 есть пустое множество.
Если множество В состоит из части элементов множества А или совпадает с ним, то множество В называется подмножеством множества А и обозначается
В С А.
Если, например, А – множество всех студентов ВУЗа, а В – множество студентов-первокурсников этого ВУЗа, то В есть подмножество множества А, т.е. В С А.
Два множества называются равными, если они состоят из одних и тех же элементов.
Объединение двух множеств А и В называется множество С, состоящее из всех элементов, принадлежащих хотя бы одному из данных множеств, т.е. С=АUВ.
Например, если А= {а, в, d, е}; В= {а, е, f, с, к}, то С = АUВ = {а, в, d, е, f, с, к}
Пересечением двух множеств А и В называется множество Д, состоящее из всех элементов, принадлежащих каждому из данных множеств А и В, т.е. Д = А∩В.
Например, 1) если А= {1, 2, 3}, В= {2, 3, 4}, то Д = А∩В = {2, 3}. 2) если А = {1, 2, 3}; В= {4, 5, 6, 7}, то А∩В = Ø.
Разностью множеств А и В называется множество Е, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е. Е = А \ В.
Например, если А = {a, b, c, d}, B = {b, c}, то А\В = {а, d}.
Пример, Даны множества А = {1, 3, 6, 8}, В = {2, 4, 6, 8}. Найти объединение, пересечение и разность множеств А и В.
Решение: АUВ = {1, 2, 3, 4, 5, 6, 8}
А∩В = {6, 8}
А \ В = {1, 3}
Множества называется конечным, если оно состоит из конечного числа элементов, в противном случае оно называется бесконечным.
Множества элементами, которых являются действительные числа, называются числовыми. Из школьного курса алгебры известны множества: R – множество действительных чисел, Q – множество рациональных чисел, Z – множество целых чисел, N – множество натуральных чисел.
Очевидно, что N С Z C Q C R
Геометрически множество действительных чисел R изображается точками числовой прямой (числовые оси). (Рис.1), т.е. прямой на которой выбрано начало отчета, положительные направления и единица масштаба.
Рис.1
Между множеством вещественных чисел и точками числовой прямой существует взаимно однозначное соответствие, т.е. каждому действительному числу соответствует определенная точка числовой прямой, и наоборот, каждой точке прямой – определенное вещественное число.
Множество Х, элементы которого удовлетворяют неравенству а ≤ x ≤ в, называется отрезком (или сегментом), обозначается [a, в], если элементы Х удовлетворяют неравенству а<x<в - открытым интервалом (а, в); неравенствам а ≤ х < в или а< х ≤ в, называется полусегментами соответственно [а, в) и (а, в].
Абсолютная величина действительного числа. Окрестность точки.
Абсолютной величиной (или модулем) действительного числа х называется само число х, если х неотрицательно, и противоположное число – х, если х – отрицательно: /х/=
По определению /х/ ≥ 0. Например, /5/=5; /-1,5/=1,5.
Свойства абсолютных величин:
1. │х+у│ ≤ │х│+│у│, 2. │х-у│ ≥ │х│ - │у│,
3. │ху│ = │х│*│у│, 4. │х/у│ = │х│/│у│
Из определения абсолютной величины числа следует: -│х│≤ х ≤ │х│. Пусть │х│< ε, можно написать: -ε< -│х│≤ х ≤│х│<ε, или -ε<х<ε, т.е. значения х лежат на открытом интервале (-ε, ε).
Рассмотрим неравенства │х-а│<ε (где ε>0). Решениями этого неравенства будут точки открытого интервала (а – ε, а+ε), или а - ε<х<а+ε.
Всякий интервал, содержащий точку а называется окрестностью точки а.
Интервал (а – ε, а+ε), т.е. множество точек х таких, что │х-а│<ε (где ε>0), называется ε – окрестностью точки а. Рис.2 (ε – эсилон, буква греческого алфавита). Рис.2
|
а – ε а а+ε
Тема 9. Функция. Классификация функций.
Определение. Рассмотрим два множества Х и У, элементами которых могут быть любые объекты. Предложим, что каждому элементу х множества Х по некоторому закону или способу поставлен в соответствие определенный элемент у множества У, то говорят что на множестве Х задана функция у = ƒ(х), (или отображение множества Х во множество У).
Множество Х называется областью определения функции ƒ, а элементы у = ƒ(х) образуют множество значений функции – У.
х – независимая переменная (аргумент).
у – зависимая переменная,
ƒ – закон соответствия, знак функции.
Пусть Х и У множества вещественных чисел.
Пример. Найти область определения и область значений функции у = х2 + 1
Областью определения функции является множество Х = (-∞, ∞), область значений является множество У = [0, ∞).
Пример 2. Найти область определения функции у = 1/(х2 – 5х + 6).
Решение: Найдем значения х, в которых знаменатель обращается в нуль.
х2 – 5х + 6=0. х1 = 2, х2=3. Функция не существует в этих точках. Областью определения является объединение таких множеств: (-∞, 2) U (2, 3) U (3, ∞).
Пример 3. Найти область определения функции у= log3(х – 1).
Решение: х – 1 >0, х>1. Запишем решение в виде интервала: (1, ∞) – область определения функции.
Пример 4. Дана функция f (х) = |х + 2|/х – 1. Найти значения функции в точках
х = -2, х = -3, х = 1, х = 0.
Решение: f(-2) = |-2+2| / (2-1) = 0/1 = 0; f (-3) = |-3+2| / (3 – 2) = | - 1| / 1= 1;
f(1) = |1+2| / (1 – 1) = 3/0, точка х = 1 в область определения функции не входит, так как знаменатель в этой точке обращается в 0.
f (0) = |0 + 2| / (0-1) = 2/ -1 = -2.
Пример 5. Дана функция f(х) = 3х2 + х – 1.
Найти значение этой функции при 1) х=а2 – 1, 2) х = 1/t.
Решение: 1)f(а2 – 1) = 3(а2 – 1)2 + а2 – 1 – 1=3а4 – 6а2 + 3 + а2 - 2 = 3а4 – 5а2 + 1.
2) f (1/t) = 3(1/t2) + 1/t – 1 = (3 + t – t2)/t2.
Способы задания функции. Существует несколько способов задания функции.
а) аналитический способ, если функция задана формулой вида у = f (х). Все функции, рассмотренные в примерах 1-5 заданы аналитически.
б) табличный способ состоит в том, что функция задается таблицей, содержащей значения х и соответствующие значения f (х), например, таблица логарифмов.
в) графический способ, состоит в изображении графика функции – множество точек (х, у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения функции у = f (х).
Например, у = х2 (Рис.1); у =
(Рис.2) у у
0 х 0 х
Рис. 1. Рис. 2.
Г) Описательный способ, если функция записывается правилом ее составления, например, функция Дирихле: