Смекни!
smekni.com

Полный курс лекций по математике (стр. 11 из 14)

y = f(x)

у


S1 S2 S3

0 а=х0 в1 х1 с2 х2 с3 х3 =в х

Рис.1

Пусть п=3, тогда а = х0, х1, х2, х3=в.

С123 точки, выбранные произвольно на каждом элементарном отрезке.

S1 = f1(C1) ∆x1 – площадь прямоугольника, построенного на первом отрезке разбиения, ∆х1 = х10,

S2 = f2(C2) ∆x2 – площадь прямоугольника, построенного на втором отрезке разбиения. ∆х2 = х21,

S3 = f3(C3) ∆x3 – площадь прямоугольника, построенного на третьем отрезке разбиения. ∆х3 = х32,
S = S1 + S2 +S3 = f1 (C1)∆x1 + f2 (C2)∆x2 + f3 (C3)∆x3 = Σ f(Ci)∆xi.

Это площадь ступенчатой фигуры, составленной из прямоугольников.

Понятие определенного интеграла.

Обозначим длину наибольшего из отрезков разбиения через max ∆хi, где i=1,2,…п
Определение. Пусть предел интегральной суммы Σ f(Ci)∆xi при стремлении max ∆хi к нулю существует, конечен и не зависит от способа разбиения отрезка
[a, в] на части и от выбора точек С1, С2, …, Сп. Тогда этот предел называется определенным интегралом от функции у = f(х) на [а, в] и обозначается
, т.е
= lim Σ f(Сi)∆xi при

max ∆xi →0

Число а называется нижним пределом, b – верхним пределом, f(x) – подинтегральной функцией, f(x)dx – подинтегральным выражением.

Некоторые свойства определенного интеграла.

10 . Значение определенного интеграла не зависит от обозначения переменной интегрирования, т.е.

=
=
и т.д.

20.

есть число.

30.

= -
, а<b

40. Постоянный множитель можно выносить за знак интеграла.

= m
, где m – const.

50. Интеграл от суммы функций равен сумме интегралов.

60. Если отрезок интегрирования разбит на части (a < c < b), то интеграл на всем отрезке равен сумме интегралов на каждой из частей.

=
,

Существует еще ряд важных свойств определенного интеграла, которые подводят нас к формуле для вычисления определенного интеграла. Эта формула называется формулой Ньютона – Лейбница для f(x) непрерывной на [а; b].

= F(b) – F(a), где F(x) некоторая первообразная для функции f(x).

Например,

- вычислить.

1)

Находим первообразную для функции х2, т.е. неопределенный интеграл от х2, произвольную постоянную С приравняем к нулю.
= x3/3 │ = 1/3 – 0/3 = 1/3

2) Подставим в первообразную х3/3 вначале значение верхнего предела, равного 1, затем значение нижнего предела, равного 0 вместо х.


Пример 1. Вычислить
│= sin π/2 – sin π/6 = 1 – ½ = 1/2
Пример 2. Вычислить
│ = 22 – 24/4 – [ (-1)2 – ((-1)4/4)] =

= 4 – 4 –(1- (1/4)) = -3/4.


Тема 14. Несобственные интегралы.

Мы ввели понятие определенного интеграла от функции y = f(x) на отрезке [а; b], когда функция y = f(x) была интегрируема (и, следовательно, ограничена) на конечном отрезке [а; b]. Если отрезок интегрирования бесконечен, или функция не ограничена на отрезке интегрирования, то мы встречаемся с понятием несобственного интеграла.

Несобственные интегралы с бесконечными пределами интегрирования.

Рассмотрим интеграл с переменным верхним пределом

. Такой интеграл есть некоторая функция от переменного верхнего предела, т.е.

= Ф(х), х ≥ а.

Определение.

– называется несобственным интегралом от функции f(x) на интервале [а;¥), вводится он как предел функции Ф(t) при t ®¥, т.е.
.

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся, если предел бесконечен или не существует, то несобственный интеграл называется расходящимся.

Пример 1. Вычислить
Решение
= lnx │ = lim lnx – ln2 = ∞ - ln2 = ∞. Интеграл расходится.
Пример 2. Вычислить
Решение
=
= x –2/-2 │ = -1/(2x 2) │= -1/2 (lim 1/x2 – 1) = -1/2 (0-1) = 1/2

Интеграл сходится к ½.

По аналогии определяется несобственный интеграл на интервале (-¥, b].

Определение сходимости

аналогично предыдущему.