Решение: dy = y` * dx = (2x^2)` * dx = 2x^2 ln2 * 2xdx
Производные высших порядков.
Пусть мы нашли от функции у = f(х) ее производную у` = f `(х). Производная от этой производной и называется производной второго порядка от функции f(х) и обозначается у`` или f `` (х) или (d2y) / (dx2). Аналогично определяются и обозначаются: производная третьего порядка у``` = f ```(x) = (d3y) / (dx3).
производная четвертого порядка уIV = f IV(x) = (d4y) / (dx4).
производная n-oго порядка у(n) = f (n)(x) = (d n y) / (dxn).
Пример: у = 5х4 – 3х3 + 2х – 2. Найти у``.
Решение. Находим в начале первую производную: у` = 20х3 – 9х2 +2, потом вторую от первой производной: у`` = 60х2 – 18х.
Пример. y=хsinx. Найти у```.
Решение. y` = sinx + xcosx
y`` = cosx + cosx – x sinx = 2cosx – x sinx
y``` = -2sinx – sinx – x cosx = -3sinx – x cosx.
Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла.
Определение. Функция F(x) называется первообразной для функции f(x) на интервале Х, если в каждой точке этого интервала выполняется условие
F ` (x)=f(x).
Например, для функции f(x) = 2х первообразной является F(х) = х2 для любых х Є (-∞, ∞).
Действительно, F`(x) = 2x = f(x).
F1(x) = x2 + 2 так же является первообразной для f(x) = 2x, F2(x) = x2 – 100 первообразная той же функции f(x) = 2x.
Теорема. Если F1(x) и F2(x) первообразные для функции f(x) на некотором интервале Х, то найдется такое число С, что справедливо равенство:
F2(x) = F1(x) + C,
Или можно сказать так, две первообразные для одной и той же функции отличаются друг от друга на постоянное слагаемое.
Определение. Совокупность всех первообразных для функции f(x) на интервале Х называется неопределенным интегралом от функции f(x) и обозначается
f(x)dx, где - знак интеграла, f(x) – подинтегральная функция, f(x)dx – подинтегральное выражение. Таким образом f(x)dx = F(x) + C,F(x) – некоторая первообразная для f(x), С – произвольная постоянная. Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.
Основные свойства неопределенного интеграла.
1. (
(f(x)dx)` = f(x). Производная от неопределенного интеграла равна подынтегральной функции.2. Дифференциал от неопределенного интеграла равен подинтегральному выражению. d(
f(x)dx) = f(x)dx.3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого.
d(F(x)) = F(x) + C.4. Постоянный множитель можно выносить за знак интеграла:
, где к - число
5. Интеграл от суммы двух функций равен сумме интегралов от этих функций
(f(x) +φ(x))dx = f(x)dx + φ(x)dx.Для вычисления неопределенных интегралов от функций используют таблицу неопределенных интегралов, которая приводиться ниже.
Таблица неопределенных интегралов.
1.
хα dx = [xα+1 / (α +1)] +C, α ≠ -1, α Є R2.
dx/x = ln│x│+C3.
ax = (ax/ln a)+C, exdx = ex+C4.
sinx dx = -cosx + C5.
cosx dx = sinx + C6.
dx/(cosx)2 = tgx + C7.
dx/(sinx)2 = -ctgx + C8.
dx / 2-x2) = (arcsin x/a) + C9.
dx / 2 – x2) = (-arccos x/a) +C10.
dx / a2 +x2 = 1/a arctg x/a +C11.
dx / a2 +x2 = - 1/a arcctg x/a +C12.
dx / a2 -x2 = 1/2a ln │x+a/x-a│ +C13.
dx / a2 +x2) = ln │x+ 2+x2)│ +C.Пример 1. Вычислить
(2х2 -3 -1)dx.Решение. Воспользуемся свойствами 4 и 5 неопределенных интегралов и первой табличной формулой.
(2х2 -3 -1)dx = 2 х2 dx - 3 х1/2 dx - dx== 2(x2/2) – 3[(х3/2 *2)/3] – x + C = x2 - 2
3 – x +C.Пример 2.
(2/ -1/х + 4sinx)dx = 2х –1/2dx – ln │х│ - 4cosx + C == 2[(x1/2 *2)/1] – ln │x│ - 4 cosx +C = 4
-ln│x│- 4cosx + C.Для вычисления неопределенных интегралов применяют следующие методы: метод непосредственного интегрирования, метод подстановки(метод замены переменной), метод интегрирования по частям.
Существуют элементарные функции первообразные которых элементарными функциями не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции не интегрируемыми в элементарных функциях.
Например,
e –x^2 dx, sinх2 dx, cosх2 dx, sinx/x dx, cosx/x dx, dx/lnx – «неберущиеся» интегралы , т.е. не существует такой элементарной функции, что F `(x) = e –x^2, F ` (x) = sinx2 и т.д.Тема 13. Определенный интеграл, его свойства.
Формула Ньютона - Лейбница.
Понятие интегральной суммы.
Пусть на отрезке [a, в] задана функция у = f(x). Разобьем отрезок на п элементарных отрезков точками деления а = х0, х1, х2, …, хп = в. На каждом элементарном отрезке [xi-1, xi] выберем произвольную точку Сi и положим