Смекни!
smekni.com

Математика в современном мире 2 (стр. 3 из 3)

Эта вера содержится уже в призыве Галилея: "Измерить все, что измеримо, и сделать измеримым то, что неизмеримо". Особенно интересна вторая часть этой программы: как нам быть с любовью, состраданием, мужеством, нежностью? Очевидно, всем этим сторонам жизни нет места в математизированной концепции мира.

В научной идеологии математизация играет ту же роль, что стандартизация в технике. Простейший путь применения математики - это счет. Но считать можно только однородные объекты. Пусть нам даны, скажем, яблоко, цветок, собака, дом, солдат, девушка, луна. Мы можем сосчитать их и сказать, что их 7 - но 7 чего? Единственный ответ - 7 предметов. Различия между собакой и луной, между яблоком и солдатом исчезают: они все потеряли свою индивидуальность и превратились в лишенные признаков "предметы". Счет убивает индивидуальность. Это самый примитивный пример, но во всех случаях присутствует тот же принцип. Другая особенность математики, очень существенная для научной идеологии, - это ее способность трансформировать решение глубоких проблем в стандартизированные логические схемы. Например, квадрирование параболы или спирали в античности было проблемой, требующей усилий такого гениального математика, как Архимед, и основывалось на красивом арифметическом тождестве. Сейчас школьник старших классов может стандартным приемом вычислить интеграл от xndx при любом n. Более того, такое вычисление легко совершает компьютер. Возникает чувство, что вся математика может быть сведена к работе грандиозного компьютера. Но большинство математиков, несомненно, согласятся с тем, что их работа в принципе отличается от работы компьютера. Этот вопрос был предметом интересной дискуссии между Пуанкаре и Гильбертом в начале нашего века. Та же проблема ставилась тогда иначе: формализуема ли математика? Ответ Гильберта был: "да" - и на этом пути он надеялся получить доказательство непротиворечивости арифметики. Пуанкаре не соглашался с ним. Позже теорема неполноты Гёделя, по-видимому, решила вопрос в пользу Пуанкаре. Особенно интересны взгляды Пуанкаре на роль эстетического чувства в математическом творчестве. Он говорит, что математическое открытие приносит чувство наслаждения, оно привлекательно как раз ввиду содержащегося в нем эстетического элемента. Если бы математика была лишь собранием силлогизмов, она была бы доступна всем - для этого была бы нужна лишь хорошая память. Но известно, что большинству людей математика дается с трудом. Пуанкаре видит причину в том, что силлогизмы складываются в математике в "структуру", обладающую красотой. Чтобы понимать математику, надо "увидеть" эту красоту, а это требует эстетических способностей, которыми не все обладают.

Пуанкаре предлагает очень интересную схему математического творчества. Он связывает его с делением человеческой психики на сознательную и бессознательную части. Процесс начинается с сознательных усилий, направленных на решение некоторой проблемы. Эти усилия повышают активность бессознательной части психики. Там появляется множество новых комбинаций математических объектов - как бы возможных фрагментов решения. Они возникают в громадном количестве и с колоссальной скоростью. Сейчас мы могли бы сравнить эту фазу с работой грандиозного компьютера. Но подавляющая часть этих комбинаций бесполезна для решения проблем. Они, за очень небольшим исключением, не достигают сознания, проходят отбор, основанный на эстетическом принципе, некий эстетический барьер позволяет лишь небольшому их числу проникнуть в сознание. Они появляются там как готовая идея решения, причем это сопровождается очень сильным субъективным чувством уверенности в правильности идеи. Дальше остается лишь техническая работа по осуществлению найденного решения.

Эта схема, очевидно, напоминает картину эволюции, основанную на мутациях и естественном отборе, и, вероятно, возникла под ее влиянием. Гораздо позже, видимо, не зная об идеях Пуанкаре, Конрад Лоренц высказал аналогичные мысли. Он рассматривает жизнь как "процесс обучения", "познавательный процесс". Он подчеркивает черты, общие обоим явлениям - мышлению и эволюции, - такие, как "творческое озарение", "творческий акт", когда после долгих поисков "почти мгновенно" возникает новая идея или новый вид. Но можно эту аналогию обратить и взглянуть на эволюцию как на результат деятельности некоего гигантского интеллекта или души Природы. Концепция "anima mundi" (души Природы) возникала в различных философских и мистических учениях: у Платона, в христианстве. Когда в молодости я читал работы Пуанкаре, мне пришла в голову мысль об эволюции как процессе мышления; она показалась очень привлекательной. Только много позже я узнал, что еще до Дарвина знаменитый естествоиспытатель Л. Агассис рассматривал эволюцию как "мышление Бога". Но если продолжить эту аналогию, то насколько красивее окажется точка зрения Пуанкаре сравнительно с принятой сейчас концепцией: решающим фактором в эволюции оказывается не "борьба за существование", а эстетический критерий. Тогда становится понятным, почему природа порождает не только прекрасные растения и животных, но и решения проблемы адаптации видов, которые по красоте н е уступают самым совершенным научным теориям.

Но профессионалам-математикам вряд ли нужны какие-либо аргументы в пользу важности эстетического элемента в математике: в разговорах математика все время можно услышать: "изящное доказательство", "прекрасная статья"... Каждый математик знает, что в его работе эстетическое чувство не только дает удовлетворение, помогающее и облегчающее необходимые усилия, но и является рабочим средством, не менее важным, чем чисто логическое рассуждение. Он не будет следовать некоторой линии мыслей, т. к. она приводит к несимметричным, некрасивым формулам, и он будет верить в некоторую гипотезу и не пожалеет сил для ее доказательства только потому, что она очень красива. С этой точки зрения математика играет противоположную, анти-техническую роль. Мы видим, как под воздействием технологической цивилизации красота все больше исчезает из нашей жизни: из живописи и музыки, из архитектуры наших городов и из окружающей нас природы в виде прекрасных бабочек, цветов и птиц. Математика (вместе с математической физикой) остается почти единственным островом, где это загадочное явление сохраняется в полной силе. Иисус спросил: "Что есть истина?". Явление красоты не менее загадочно. Очевидно, что это - одна из фундаментальных форм взаимодействия с внешним миром, столь же существенная для большинства живых существ, как феномен истины и морали - для человека.

Многие виды гибли из-за гипертрофированного развития признаков, первоначально очень полезных для их выживания (например, громадная броня гигантских третичных ящеров). Для Homo sapiens эту роль может сыграть его интеллект: способность к холодному рациональному мышлению, не ограниченному моралью и жалостью. Математика, несомненно, как-то связана со способностью к такому алгоритмическому, машинообразному мышлению. С другой стороны, она глубоко связана с эстетическим чувством, которое способно служить противоядием для этой тенденции. И математик имеет свободу выбора - в каком направлении развития человечества принять ему участие.[7]

Заключение

Если говорить о современном историческом этапе развития математического познания, то он идет в русле дальнейшего освоения философских категорий: теория вероятностей “осваивает” категории возможного и случайного; топология – категории отношения и непрерывности; теория катастроф – категорию скачка; теория групп – категории симметрии и гармонии и т.д.

В математическом мышлении выражены основные закономерности построения сходных по форме логических связей. С его помощью осуществляется переход от единичного (скажем, от определенных математических методов – аксиоматического, алгоритмического, конструктивного, теоретико-множественного и других) к особенному и общему, к обобщенным дедуктивным построениям. Единство методов и предмета математики определяет специфику математического мышления, позволяет говорить об особом математическом языке, в котором не только отражается действительность, но и синтезируется, обобщается, прогнозируется научное знание. Могущество и красота математической мысли – в предельной четкости её логики, изяществе конструкций, искусном построении абстракций[8].

Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых прежде всего в механике, астрономии, физике, то современный её язык – это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая.

Язык современной вычислительной математики становится все более универсальным, способным описывать сложные (многопараметрические) системы.

Список использованной литературы:

1. Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005. – 177 с.

2. Кудрявцев Л.Д. Мысли о современной математике и ее изучении / Л.Д. Кудрявцев. - М.: Просвещение, 1977.

3. Курант Р., Роббинс Г. Что такое математика? - М., Просвещение, 2007. – 190 с.

4. Фор Р., Кофман А., Дени-Папен М. Современная математика. - М., Мир, 2006. – 311 с.

5. Гильде В. Зеркальный мир. - М., Мир, 2007. – 255 с.

6. Стили в математике: социокультурная философия математики.//Под ред. А.Г. Барабашева. - СПб., РХГИ. 2008. – 244 с.

7. Шафаревич И.Р. Математическое мышление и природа-доклад,1993.


[1] Курант Р., Роббинс Г. Что такое математика? - М., Просвещение, 2007. – 190 с.

[2] Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005. – 177 с.

[3] Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005. – 177 с.

[4] Фор Р., Кофман А., Дени-Папен М. Современная математика. - М., Мир, 2006. – 311 с.

[5] Фор Р., Кофман А., Дени-Папен М. Современная математика. - М., Мир, 2006. – 311 с.

[6] Гильде В. Зеркальный мир. - М., Мир, 2007. – 255 с.

[7]Шафаревич И.Р. Математическое мышление и природа-доклад,1993

[8] Стили в математике: социокультурная философия математики.//Под ред. А.Г. Барабашева. - СПб., РХГИ. 2008. – 244 с.