Доказательство. Предположим, что
не -дисперсивна, где таково, что равносильно . Так как --- формация -дисперсивных групп, то, по лемме , лемма верна. Пусть теперь -дисперсивна. В этом случае лемма верна по лемме . Лемма доказана.Пусть
--- произвольная насыщенная -замкнутая формация сверхразрешимых групп, --- несверхразрешимая -группа с плотной системой -субнормальных подгрупп. Тогда --- группа одного из следующих типов:1)
--- минимальная несверхразрешимая группа, у которой , ;2)
, где , содержит такую абелеву подгруппу , нормальную в , что --- минимальная несверхразрешимая группа, являющаяся в максимальной подгруппой непростого индекса, подгруппа сверхразрешима, где --- любая максимальная подгруппа из ;3)
, , --- минимальная нормальная подгруппа группы , подгруппа , где --- произвольная максимальная подгруппа из , является либо сверхразрешимой, либо минимальной не -группой, либо группой типа 2) из данной теоремы;4)
, , где --- минимальная нормальная подгруппа группы , , подгруппа , является либо минимальной несверхразрешимой группой, либо группой типа 2) из данной теоремы;5)
, , --- минимальная нормальная подгруппа из , --- абелева группа, и --- минимальные несверхразрешимые группы, подгруппа либо сверхразрешима, либо минимальная несверхразрешимая группа, где --- произвольная максимальная подгруппа из ;6)
, , где , --- минимальные нормальные подгруппы группы , , --- минимальная несверхразрешимая группа;7)
, ), где --- минимальная нормальная подгруппа группы , сверхразрешима, подгруппа , где --- произвольная максимальная подгруппа группы , либо сверхразрешима, либо минимальная несверхразрешимая группа, либо группа типа 2) или 4) из данной теоремы;8)
, и имеет точно четыре класса максимальных сопряженных подгрупп, представителями которых являются подгруппы , , , со следующими свойствами: , --- минимальные несверхразрешимые группы, подгруппы и принадлежат , где --- максимальная подгруппа из , --- максимальная подгруппа из ;9)
, и имеет точно четыре класса максимальных сопряженных подгрупп, представителями которых являются подгруппы , , , со следующими свойствами: сверхразрешима, --- либо минимальная несверхразрешимая группа, либо группа типа 2) из данной теоремы, , где --- максимальная подгруппа из , либо принадлежит , либо и является минимальной несверхразрешимой группой или группой типа 2) из данной теоремы, , где --- максимальная подгруппа из , либо принадлежит , либо и является минимальной несверхразрешимой группой или группой типа 2) из данной теоремы.