Смекни!
smekni.com

Элементы общей топологии (стр. 1 из 9)

Курсовая работа

на тему: «Элементы общей топологии»


Введение

Топология – одна из самых молодых ветвей геометрии. Топология является одним из самых абстрактных разделов современной математики. Примерно за сто лет её существования в ней достигнуты результаты, важные для многих разделов математики.

Топология (от греческого «τοποξ» – место, окрестность, «λογοξ» – закон) – раздел математики, изучающий идеи непрерывности. В топологии впервые даются строгие определения таких фундаментальных понятий геометрии, как линия и поверхность. Предметом топологии являются свойства фигур, сохраняющиеся при гомеоморфизмах, то есть взаимно однозначных и непрерывных в обе стороны отображениях. Топология, как наука возникла из потребностей связанных с математическим анализом. Эта наука, хотя и считается молодой, на самом деле известна уже давно, именно благодаря тесным связям с математическим анализом. Идеи топологии идут от работ таких крупных математиков 19 в. как Риммман, Пуанкаре, Кантор, Эйлер. Развитие топологии идёт бурными темпами и в большом числе направлений, этот процесс не окончен в настоящее время, хотя ряд крупных проблем, стоящих перед топологией, успешно решен. Топологические методы стали мощным инструментом математического исследования. Топологический подход позволяет упростить многие доказательства фундаментальных теорем классической математики и обобщить эти теоремы на более широкие классы пространств.

Геометрия школьного курса имеет дело в основном со свойствами фигур, связанными с понятиями длины, площади, объема-то есть метрическими свойствами фигур. Лишь очень немногие теоремы и задачи школьного курса геометрии рассматривают свойства иного характера. Топология как раз и является разделом геометрии, изучающим свойства фигур, которые могут быть установлены без измерения и сравнения величин, но при этом имеющие геометрический смысл.

Целью первой главы курсовой работы было рассмотреть основные элементы общей топологии.

Задачи:

· дать определение топологического пространства;

· рассмотреть свойства топологических пространств;

· охарактеризовать топологические преобразования.

Во второй главе работы мы попытались рассмотреть топологические свойства поверхностей. Были поставлены следующие задачи:

· дать определение двумерного многообразия;

· рассмотреть эйлерову характеристику поверхности;

· охарактеризовать ориентируемые и неориентируемые поверхности.

1. Элементы общей топологии

1.1 Понятие топологического пространства

1.1.1 Понятие метрического пространства

Определение 1. Декартово произведение множеств А и В определяется как множество всех упорядоченных пар (х, у), где хÎА, уÎВ, то есть

А´В = {(х, у)| хÎА, уÎВ}.

В частности, возможно А = В.

Определение 2. Говорят, что в множестве Х задана метрика r, если определено отображение

r: Х ´ Х ®R,

удовлетворяющее следующим аксиомам:

1. " х, у Î Х {r (х, у) ³ 0}, причем r (х, у) = 0 Û х = у.

2. " х, у Î Х {r (х, у) = r (у, х)}.

3. " х, у, zÎ Х {r (х, у) + r (у, z) ³r (х, z)}.

Условия 1, 2, 3 называются аксиомами метрики, при этом условие 2 называется аксиомой симметрии, а 3 – аксиомой треугольника.

Определение 3. Множество Х с заданной на нем метрикой r называется метрическим пространством и обозначается (Х, r).

В тех случаях, когда ясно, о какой метрике идет речь, метрическое пространство (Х,r) обозначают просто Х.

Число r(х, у) называют расстоянием между точками х и у в пространстве Х.

1.1.2 Примеры метрических пространств

Пример 1. Определим для элементов произвольного непустого множества Х расстояние следующим образом:

r(х, у) =

.

Очевидно, аксиомы 1 – 3 выполняются, а, следовательно, (Х, r) – метрическое пространство.

Пример2. Множество действительных чисел R с расстоянием

r(х, у) = (у – х)2 не является метрическим пространством.

Действительно не выполняется третья аксиома. Например, для трех точек 2, 3 и 4 получим:

r(2, 3) = (3 – 2)2 = 1, r(3, 4) = (4 – 3)2 = 1,

r(2, 4) = (4 – 2)2 = 4 и r(2, 3) + r(3, 4) < r(2, 4).

Определение 1. Пусть (Х, r) – метрическое пространство, х0Î Х,

r > 0– действительное число. Назовём открытым шаром с центром в точке х0 и радиусом r множество

U (x0, r) = {x | xÎX, r (x, x0) <r}.

Определение 2. Подмножество GÌ Х будем называть открытым в

(Х, r), если любая его точка является центром некоторого открытого шара, содержащегося в G.

Пустое множество Æ также считаем открытым множеством.

Определение 3. Окрестностью точки Аметрического пространства будем называть любое открытое множество, содержащее эту точку.

Обозначим совокупность всех открытых множеств в (Х, r) просто Фr.

Тогда имеет место следующая теорема.

Теорема. 1) Объединение любой совокупности {Ga} множеств из Фr принадлежит Фr.

G
ÎФr.

2) Пересечение любых двух множеств G1 и G2 из Фr принадлежит Фr.

G1ÇG2Î Фr.

3) Метрическое пространство Х – открытое множество, то есть

Х Î Фr, ÆÎ Фr.

Доказательство. 1) Пусть

. Обозначим

G =

.

Возьмём произвольную точку х0ÎG. Тогда существует такое a0, что х0Î

, и так как
Î Фr, то найдётся число r0, что

U (х0, r0) Ì

.

Так как G

0ÌG, то U (х0, r0) ÌG.

Итак, G– открытое множество.

2) Пусть G = G1ÇG2, где G1, G2 Î Фr и G

Æ.

Если х0ÎG, то х0ÎG1 и х0ÎG2.

Тогда существуют такие радиусы r1 и r2, что


U(х0, r1) ÌG1,U(х0, r2) ÌG2.

Обозначим r= min{r1, r2}, тогда

U (х0, r) ÌG1ÇG2 = G.

Итак, G – открытое множество.

3. Так как всегда можно представить

Х =

,

где Ua– открытый шар радиуса r, с центром в точке

, объединение рассматривается по всем точкам пространства, то в силу 1 получим, что пространство Х – открыто. Пустое множество мы предполагаем всегда открытым.

В дальнейшем описанное нами семейство Фr всех открытых множеств в метрическом пространстве (Х, r) будем называть топологией, индуцированной метрикой r в Х..

1.1.3 Определение и примеры топологических пространств

Многие понятия теории метрических пространств (предел, предельная точка, точка прикосновения, замыкание множества, граница множества, непрерывность и т.д.) вводятся, опираясь на понятие окрестности или, что тоже самое, на понятие открытого множества. Понятие окрестность и открытое множество определяются с помощью метрики.

Свойства открытых множеств метрического пространства принимаются в качестве аксиом. Этот путь приводит нас к топологическим пространствам, по отношению к которым метрические пространства представляют собой частный случай.

Определение 1. Пусть Х – непустое множество элементов произвольной природы, Ф = {

} – семейство подмножеств множества Х, удовлетворяющее следующим аксиомам:

1. Само множество Х и пустое множество Æ принадлежат семейству Ф.

2. Объединение любого семейства множеств из Ф также принадлежит Ф.

3. Пересечение любых двух множеств из Ф также принадлежит Ф.

Тогда семейство Ф называется топологией или топологической структурой.

Пара (Х, Ф) или, другим словами, множество Х, в котором задана некоторая топология, называется топологическим пространством.

Элементы множества Х называются точками топологического пространства, элементы семейства Ф называются открытыми множествами в (Х, Ф).

Когда не может возникнуть недоразумений, разрешается просто писать: Х – топологическое пространство, G

– открытое множество, то есть не указывать постоянно связь с топологией Ф.

Примеры топологических пространств.

Пример 1. Х – произвольное множество. Из аксиомы 1 топологического пространства вытекает, что среди открытых множеств любой топологической структуры в Х обязательно должны быть пустое множество Æ и само множество Х. Очевидно, что для семейства

Фт = {Æ, X},

которое состоит лишь из этих двух множеств, выполняются также и аксиомы 2 и 3.

Поэтому Фт = {Æ, X} является простейшей топологической структурой в Х. Эта топология называется тривиальной, а пара (Х, Ф) тривиальным топологическим пространством. Иногда эту пару называют антидискретным топологическим пространством.

Пример 2. Другой крайностью является так называемое дискретное топологическое пространство (Х, Фd), где Фdпредставляет собой семейство всех подмножеств множества Х. Очевидно, что и в этом случае все аксиомы 1 – 3 выполняются.