Вынесем из второй скобки равенства – q, из третьей – q2 и из n – qn-1, получим
.Учитывая, что
окончательно получаем, .В свою очередь так как,
, но .Заключение
В процессе выполнения данной дипломной работы были выполнены все поставленные задачи, тем самым цель работы достигнута.
В первой главе были собраны вспомогательные понятия и теоремы, используемые в дипломной работе.
Во второй главе доказываются теоремы Силова и дается описание групп порядка pq.
Материалы данной дипломной работы могут быть использованы при чтении спецкурсов посвященных как теории групп вообще, так и отдельным её разделам.
Список литературы
1. Варпаховский Ф.Л. и др. Алгебра. Группы, кольца, поля. Векторные и евклидовы пространства. Линейные отображения. – Учебное пособие. – М.: Просвещение, 1978 .
2. Каргополов М.И, Мерзляков Ю.И. Основы теории групп. – М.: Наука,
1982.
3. Кострикин А.И. Введение в алгебру. Часть I. Основы алгебры. – Учебник для вузов. – М.: Физико-математичекая литература, 2001.
4. Кострикин А.И. Введение в алгебру. Часть III. Основные структуры алгебры. – Учебник для вузов. – М.: Физико-математичекая литература,
2001.
5. Кострикин А.И. Сборник задач по алгебре. – Учебник для вузов. – М.: ФИЗМАЛИТ, 2001.
6. Куликов Л.Я. Алгебра и теория чисел. – Учеб. пособие для педагогических институтов. – М.: Высш. школа, 1979.
7. Курош А.Г. Курс высшей алгебры. – М.: Наука, 1965.
8. Курош А.Г. Теория групп. – М.: Гостехиздат, 1953.
9. Ларин С.В. Лекции по теории групп. – Красноярск, 1994.
10. Ленг С. Алгебра. – М.: Мир, 1968.
11. Ляпин Е.С. и др. Упражнения по теории групп. – М.: Наука, 1967.
12. Нечаев В.А Задачник–практикум по алгебре. – М.: Просвещение, 1983.
13. Фадеев Д.К. Лекции по алгебре. – Учебное пособие для вузов. – М.:
Наука, 1984.
14. Холл М. Теория групп. – М.: ИЛ, 1962.