Смекни!
smekni.com

Место и роль математики в менеджменте и экономике (стр. 1 из 3)

Государственный университет экономики статистики и информатики

Реферат

по предмету: Высшая математика

на тему: Место и роль математики в менеджменте и экономике


Глава 1. Развитие понятия функции

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело со все более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.

Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

Начиная с XVIII века одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Необходимые предпосылки к возникновению понятия функции были созданы, когда возникла аналитическая геометрия, характеризующаяся активным привлечением алгебры к решению геометрических задач.

Идея функциональной зависимости возникла в глубокой древности. Она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур и геометрических тел.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берет свое начало в XVII веке в связи с проникновением в математику идеи переменных.

Четкого представления понятия функции в XVII веке еще не было, однако путь к первому такому определению проложил Декарт. Постепенно понятие функции стало отождествляться с понятием аналитического выражения – формулы.

Явное определение функции было впервые дано в 1718 году Иоганном Бернулли: «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных».

Во второй половине XIX века понятие функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция y = f(x), или что множество А отображено на множество В.

Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например, к геометрическим фигурам.

Краткий обзор развития понятия функции приводит к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом.


Глава 2. Основные свойства функции

2.1 Определение функции и графика функции. Область определения и область значений функции. Нули функции

функция график экономический

Умение изображать геометрически функциональные зависимости, заданные формулами, особенно важно для успешного усвоения курса высшей математики.

Как известно, функциональной зависимостью называют закон, по которому каждому значению величины х из некоторого множества чисел, называемого областью определения функции, ставится в соответствие одно вполне определенное значение величины у; совокупность значений, которые принимает зависимая переменная у, называется областью изменения функции.

Независимую переменную х называют также аргументом функции. Число у, соответствующее числу х, называют значением функции fв точке х и обозначают f(x).

Функцию можно задать тремя способами: аналитический, табличный, графический.

Аналитический – с помощью формул.

Табличный – с помощью таблиц, где можно указать значения функции, однако лишь для конечного набора значений аргумента.

Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции.

Графиком функции fназывают множество всех точек (х;у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f.

Пример 1. Найти область определения функции

y= lg (2x-3) у = lg(2x-3)

D(y): 2x-3 > 0

2x> 3

х > 1,5

Ответ: D(y) = (1,5; +∞ ).

Одним из понятий для исследования функции является нули функции.

Нули функции – это точки, в которых функция принимает значение нуля.

Пример 2. Найти нули функции

y= 4x-8

у = 4x-8

D(y) = R

По определению:

у = 0,

тогда

4х-8 = 0

4x= 8

х = 2

Ответ: нулями этой функции является точка х = 2.


2.2 Виды функций (четные, нечетные, общего вида, периодические функции)

Рассмотрим функции, области определения которых симметричны относительно начала координат, то есть для любого х из области определения число (-х) также принадлежит области определения. Среди таких функций выделяют четные и нечетные.

Определение: Функция f называется четной, если для любого х из ее области определения f(-x) = f(x).

График четной функции симметричен относительно оси ординат.

Пример 3. Определить вид функции

y= 2cos2x.

у= 2cos2x,

D(y) = R

y(-x) = 2cos2(-x) = -2cos2x = 2cos2x = y(x) – четная.

Пример 4. Определить вид функции

y= x4 - 2x2 + 2.

Y= x4 - 2x2 + 2,

D(y) = R.

y(-x) = (-x)4 - 2(-x)2 + 2 = x4 - 2x2 + 2 = y(x) – четная.

Определение: Функция fназывается нечетной, если для любого х из ее области определения f(-x) = -f(x).

График нечетной функции симметричен относительно начала координат.


Пример 5. Определить вид функции

y= 2sin2x.

у= 2sin2x,

D(y) = R

y(-x) = 2sin2(-x) = -2sin2x = -y(x) – нечетная.

Пример 6. Определить вид функции

y= 3x+ 1/3x.

у = 3x+ 1/3x

y(-x) = 3(-x) + 1/3(-x) = -3x- 1/3x= -(3x+ 1/3x) = -y(x) – нечетная.

Определение: Функцию f называют периодической с периодом Т≠ 0, если для любого х из области определения значения этой функции в точках х, х -Т и х+Т равны, то есть f(x+T) = f(x) = f(x-T).

Пример 7. Определить период функции

y= cos2x.

cos2x = cos2(x+T) = cos(2x+2T),

где 2T= 2π, т.е. Т = π.

Для построения графика периодической функции с периодом Т достаточно провести построение на отрезке длиной Т и затем полученный график параллельно перенести на расстояния nTвправо и влево вдоль оси Ох.

Пример 8. Построить график периодической функции

f(x) = sin2x.

f(x) = sin2x,

sin2x = sin2(x+T) = sin(2x+2T),


где 2Т = 2π, т.е. Т = π.

2.3 Возрастание и убывание функций. Экстремумы

Также к свойствам функции относятся возрастание и убывание функции, экстремумы.

Функция fвозрастает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х2 > х1 , выполнено неравенство f(x2) > f(x1).

Функция f убывает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х2 > х1 , выполнено неравенство f(x2) < f(x1).

Иными словами, функция f называется возрастающей на множестве Р, если большему значению аргумента из этого множества соответствует большее значение функции. Функция f называется убывающей на множестве Р, если большему значению аргумента соответствует меньшее значение функции.

При построении графиков конкретных функций полезно предварительно найти точки минимума (xmin) и максимума (xmax).

Точка х0 называется точкой максимума функции f , если для всех х из некоторой окрестности х0 выполнено неравенство f(x) ≤ f(x0).

Точка х0 называется точкой минимума функции f , если для всех х из некоторой окрестности х0 выполнено неравенство f(x) ≥ f(x0).

Точки минимума и максимума принято называть точками экстремума.

Пример 9. Найти точки экстремума, экстремумы функции y= x2+2x, и указать промежутки возрастания и убывания функции.

у = x2+2x, D(y) = R

y’ = (x2+2x)’ = 2x+2

y’ = 0, т.е. 2х+2 = 0

2х = -2

х = -1

Исследуем знак производной справа и слева от крайней точки.

x= -2, y’= -4+2<0

x= 0, y’= 0+2>0

Так как производная меняет свой знак с «-» на «+», то х = -1, это точка минимума функции. Так как функция непрерывна в точке х = -1, то функция возрастает на [-1;+∞] и убывает на [-∞;-1].

Точки экстремума: xmin= -1

Экстремумы функции: ymin= y(-1) = 1 – 2 = -1


Глава 3. Исследование функций

3.1 Общая схема исследования функций

Исследуя функцию, нужно знать общую схему исследования:

1) D(y) – область определения (область изменения переменной х)

2) E(y) – область значения х (область изменения переменной у)

3) Вид функции: четная, нечетная, периодическая или функция общего вида.

4) Точки пересечения графика функции с осями Ох и Оу (по возможности).

5) Промежутки знакопостоянства:

а) функция принимает положительное значение : f(x) > 0

б) отрицательное значение : f(x) < 0.

6) Промежутки монотонности функции:

а) возрастания;

б) убывания;

в) постоянства ( f= const).

7) Точки экстремума (точки минимума и максимума)

8) Экстремумы функции (значение функции в точках минимума и максимума)

9) Дополнительные точки.

Они могут быть взяты для того, чтобы более точно построить график функции.

Следует заметить, что экстремумы функции f не всегда совпадают с наибольшим и наименьшим значением функции.


3.2 Признак возрастания и убывания функций

Если строить график функции по каким-либо произвольно выбранным его точкам, соединяя их плавной линией, то даже при очень большом числе случайно выбранных точек может оказаться, что построенный таким образом график будет сильно отличаться от графика заданной функции.