Курсова робота: Дослідження лінійно впорядкованого простору ординальних чисел
Зміст
Введення
Розділ 1.Вихідні визначення
§1. Порядкові визначення
§2. Топологічні визначення
Розділ 2. Лінійно впорядкований простір ординальних чисел
§1. Цілком упорядковані множини і їхні властивості
§2. Кінцеві ланцюги і їхні порядкові типи
§3. Порядковий тип
§4. Властивості ординальних чисел
§5. Простір ординальних чисел W(
Висновок
Список літератури
ВВЕДЕННЯ
ординарний число упорядкований множина
Ідеї топології були висловлені ще видатними математиками 19 століття: Н. И. Лобачевским, Риманом, Пуанкаре, Кантором, Гильбертом і Бауером. Однак загальна топологія, як неї розуміють зараз, бере початок від Хаусдорфа («Теорія множин», 1914).
Джерела теорії впорядкованих і частково впорядкованих алгебраїчних систем лежать у геометрії, функціональному аналізі й алгебрі.
Лінійно впорядковані простори, у тому числі й лінійно впорядкований простір ординальних чисел, поєднують у собі дві структури: порядкову й топологічну. Систематичного викладу теорії простору ординальних чисел не існує. Цим пояснюється актуальність обраної теми.
Ціль курсової роботи - дослідження простору ординальних чисел, його порядкових і топологічних властивостей.
РОЗДІЛ 1. Вихідні визначення й теореми
§1. ПОРЯДКОВІ ВИЗНАЧЕННЯ.
Визначення 1.1. Упорядкованою множиною називається непуста множина Х разом із заданим на ньому бінарним відношенням порядку
рефлексивно: а
транзитивне: a
антисиметричне: a
Елементи впорядкованої множини називаються порівнянними, якщо
а < b, a = b або b < a.
Зауваження: по визначенню будемо вважати, що a < b, якщо a
Визначення 1.2. Упорядкована множина називається лінійно впорядкованим, або ланцюгом, якщо будь-які його два елементи порівнянні.
Визначення 1.3. Елемент а впорядкована множина Х називається найменшим (найбільшим) елементом множини А
(х
Визначення 1.4. Елемент а впорядкована множина Х називається мінімальним (максимальним) елементом множини А
Визначення 1.5. Нехай А – непуста підмножина лінійно впорядкованої множини Х. Елемент а з Х називається верхньої (нижньої) гранню множини А, якщо він більше (менше) будь-якого елемента з А.
Визначення 1.6. Якщо множина А має хоча б одна верхню (нижню) грань, те А називається обмеженим зверху (обмеженим знизу).
Визначення 1.7. Множина А називається обмеженим, якщо воно обмежено й зверху й знизу.
Визначення 1.8. Точною верхньою гранню множини А називається найменший елемент множини всіх верхніх граней множини А. Позначається sup A.
Визначення 1.9. Точною нижньою гранню множини А називається найбільший елемент множини всіх нижніх граней множини А. Позначається inf A.
Визначення 1.10. Нехай <X,
(a, b) = {x
Визначення 1.11. Упорядкована множина називається цілком упорядкованим, якщо кожне його непуста підмножина має найменший елемент.
Визначення 1.12. Нехай М и М1 – упорядковані множини й нехай f – взаємно однозначне відображення М на М1. Відображення зберігає порядок, якщо з того, що a
§2. ТОПОЛОГІЧНІ ВИЗНАЧЕННЯ
Визначення 1.13. Топологічним простором називається пара (Х,
множина Х и Æ належать
перетинання кінцевого числа множин з
об'єднання будь-якого числа множин з
Умови 1 – 3 називаються аксіомами топологічного простору, його елементи – крапками простору. Підмножини множини Х, що належать сімейству
Визначення 1.14. Замкнутою множиною називається множина, що є доповненням до відкритого.
Визначення 1.15. Околицею крапки х топологічного простору називається будь-яка відкрита множина U, що містить х.
Визначення 1.16. Топологічний простір Х називається компактним, якщо з будь-якого його покриття відкритими множинами можна виділити кінцеве під покриття.
Визначення 1.17. Топологічний простір Х називається компактним, якщо будь-яка його центрована система замкнутих множин у Х має непусте перетинання.
Визначення 1.16 і 1.17 рівносильні ([5]).
Визначення 1.18. Простір Х називається локально компактним, якщо кожна крапка має околицю, замикання якої компактно.
Визначення 1.19. Топологічний простір Х називається розрахункове компактним, якщо з кожного рахункового відкритого покриття простору Х можна вибрати кінцеве підпокриття.
Визначення 1.20. Топологічний простір Х називається розрахункове компактним, якщо кожне його нескінченна підмножина містить хоча б одну граничну крапку.
Визначення 1.19 і 1.20 рівносильні ([5]).
Визначення 1.21. Простір
1)
2) Х – підпростір
3) Х щільно в.
Визначення 1.22. Топологічний простір Х називається Т 1-простором, якщо для кожної пари різних крапок х1, х2