Д (Х) = (b - a)2 ÷ 12 = 9 ÷ 12 = 0,75
s = √ Д = √ 0,75 = 0,87 × 100 = 87
То искомая вероятность находится по формуле:
Р (a˂ Х ˂b ) = Ф ( ( b–a ) ÷ s ) – Ф ( (a–b) ÷ s ) = Ф ((13 – 10) ÷ 4) –
Ф ((2 – 10) ÷ 4) = Ф (0,75) – Ф (– 2) = Ф (0,75) + Ф (2) = 0,2734 + 0,5 =
=0,773
Где Фх – функция Лапласа, которую находим по таблице.
Ответ: Вероятность попадания в заданный интервал ( a,b ) нормально распределенной случайной величины Х, равна 0,773.
Задание 9
Найти доверительные интервалы для оценки математического ожидания нормального распределения с надежностью 0,95, если выборочная средняя
, объем выборки n и среднее квадратическое отклонение s. = 12, 15, n = 169 s = 5Решение:
Находим доверительные интервалы: х – t γ ˂ а ˂ х + t γ
√ n √ n
где Ф (t) = Ф (γ ÷ s) → t = (γ ÷ s) = (0,95 ÷ 5) = 0,19
х – t γ = 12,15 – 0,19 × 0,95 = 12,15 – 0,01 = 12,14
√ n √ 169
х + t γ = 12,15 + 0,19 × 0,95 = 12,15 + 0,01 = 12,16
√ n √ 169
Ответ: Доверительные интервалы 12,14 ˂ а ˂ 12,16.
Литература
1. Севастьянов Б.А., Чистяков В.П, Зубков А.М. Сборник задач по теории вероятностей – М.: Наука, 1980.
2. Шипачев В.С. Высшая математика. М.: Высшая школа, 2004.
3. Чистяков В.П. Курс теории вероятности, М.: 2001.
4. Гмурман В.Е. Теория вероятностей и математическая статистика.- М.: Высшая школа, 2003.
5. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике.- М.: Высшая школа, 2003.
6. Данко П.Е и др. Высшая математика в упражнениях и задачах (I и II часть).-М, 2005.
7. Богаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика – М.: 1998.
8. Венцель Е.С. Теория вероятностей – М.: 1962.
9. Солодовников А.С. Теория вероятностей М.: Просвещение, 1978.
10. Виленкин Н.Я., Потапов В.Т. Задачник-практикум по теории вероятности с элементами комбинаторики и математической статистики.
11. Кремер Н.Ш.: «Теория вероятностей и математическая статистика»; М.ЮНИТИ – Дана, 2003.