Смекни!
smekni.com

Поток вектора через поверхность. Применение теоремы Гаусса как метод расчета полей в симметричных случаях (стр. 1 из 2)

.

М.И. Векслер, Г.Г. Зегря

Для решения задач применяется выражение

= qinside

представляющее собой комбинацию уравнения Максвелла с теоремой Гаусса:

- собственно теорема Гаусса,
- уравнение Максвелла (
).

Eсли

- некоторый вектор, то
- поток вектора
через поверхность. В частности, в вышеприведенном выражении стоит поток вектора
. Векторный элемент площади
. Орт нормали
зависит от геометрии задачи:
=

Задача. Заряд q расположен в точке (0, 0, l). Найти поток вектора

через круг радиуса R c центром в начале координат, лежащий в плоскости xy.

Решение: В плоскости xy зарядом создается поле

При вычислении потока нам потребуется величина

, где
- вектор нормали к кругу, который во всех точках ориентирован одинаково, а именно по
или
. Примем для определенности

Тогда, поскольку

, а
, имеем:

В последнем выражении сделан переход к полярным координатам: r - это расстояние от начала координат в плоскости xy. Теперь можно производить интегрирование по площади круга:

Φ =
=
=

Задача. Вычислить поток вектора

через сферу радиуса R.

Ответ: Φ = 4π Ra

Теорема Гаусса верна всегда (это математический закон), но помогает только в симметричных случаях, когда очевидна геометрия поля. В декартовом случае заряд должен изменяться только вдоль одной координаты (например x), в цилиндрическом - только в зависимости от удаления от оси цилиндра r, а в сферическом тоже только от r, но r - удаление от центра шара. Тогда при правильном выборе гауссовой поверхности поток вычисляется очень просто, так как

параллелен вектору
на части поверхности и ортогонален ему на другой её части.

Выбор гауссовой поверхности при расчете поля в точке x (или r):

- плоскостная геометрия: цилиндрическая поверхность любой формы сечения yz и любой его площади (S), занимающая область (–∞... x) вдоль оси x;

- сферическая геометрия: сфера радиуса r

- цилиндрическая геометрия: цилиндрическая поверхность круглого сечения радиуса r, имеющая произвольную длину L вдоль оси z.

= Dr(r)· 4π r2 – сферическая геометрия
Dr(r)· 2π r L – цилиндрическая
Dx(x) · S – Dx(–∞)· S – плоская геометрия

Dx(–∞)≠ 0 только в некорректных задачах. При этом Dx (–∞) = –qinside(x = +∞)/2S.

Как записать qinside для разных геометрий? Если мы различаем между зарядами ρ, σ, λ, q (то есть не пытаемся всё свести к ρ, приписывая ему и бесконечные значения), то

qinside =

qc - точечный заряд в центре, σi - заряды концентрических сфер радиусов Ri (таких сфер может быть произвольное количество), а

интегрирует объемный заряд. Аналогично в другой геометрии: λa - заряженная нить по оси цилиндра z, σi - заряды цилиндров радиусов Ri.

Задача. Пластина ширины 2a (ее ε≈ 1) заряжена как ρ(x) = α x2; при x = 0 (центр пластины) φ = 0. Найти φ(x), применяя теорему Гаусса.

Решение: Начать следует с нахождения поля как функции координаты Ex(x). Берем гауссову поверхность в виде цилиндрической поверхности, занимающей область (–∞... x) вдоль оси x и имеющей площадь сечения S в плоскости yz.

Поскольку

мы имеем выражение теоремы Гаусса в виде

=

В зависимости от того, в какой диапазон попадает x (x<–a, –a<x<a, x>a), левая часть дает

=
=
= 0, x<–a

Подставляя qinside в теорему Гаусса, с учетом Dx = ε0Ex получаем поле:

Теперь можно найти φ c учетом условия φ|x = 0 = 0, применяя формулу

в которой x может быть как больше, так и меньше нуля. Соответственно, для каждого из трех отрезков, на которых найдено Ex, получаем:

φ(x) =
=
=

Как видим, в итоге получается тот же результат, который был ранее получен путем решения уравнения Пуассона.

Задача. Имеются две концентрические заряженные сферы (σ1, R1 и σ2, R2). Найти Er(r) и φ(r).

Решение: По теореме Гаусса,

qinside = 4π r2 Dr(r) = 4π ε0 r2 Er

причем

qinside = 0 при r<R1
4πσ1R12 при R1<r<R2
4πσ1R12+4πσ2R22 при r>R2

Cоответственно, поле на каждом из участков будет

Er = 0 при r<R1

При вычислении потенциала мы должны вычислить интеграл

. При этом необходимо правильно выписывать Er на каждoм участке:
φ(r) =
=
φ(r) =
=
φ(r) =
=

В этих выражениях для φ(r) возможны очевидные алгебраические упрощения, но мы оставим их в таком виде, поскольку в дальнейших задачах они нам потребуются именно такими.