Городская конференция учащихся муниципальных образовательных учреждений, занимающихся учебно-воспитательной деятельностью
«Шаги в науку»
Научное общество учащихся «Поиск»
Муниципального образовательного учреждения
«Средняя общеобразовательная школа №86 г.Омска»
Научное направление: «Математика»
Уравнения, содержащие параметр
Соколова Александра Михайловна
ученица 10 класса МОУ
«СОШ №86 г.Омска»
Руководитель: Дощанова Тиштых Мухановна,
учитель математики
Омск 2011
Содержание
Введение
1. Знакомство с параметрами
1.1 Решение уравнений первой степени с одним неизвестным
1.2 Решение линейных уравнений с модулем
1.3 Решение квадратных уравнений
2. Примеры решений уравнений с параметром из ГИА и ЕГЭ части С
Заключение
Введение
В настоящее время различные задачи с параметрами – это одни из самых сложных заданий на экзаменах. А ведь в экзаменационных заданиях они есть как за 9 класс, так и за 11, но многие ученики даже не берутся решать эти задания, так как заведомо считают, что не смогут их решить, даже не попробовав. А на деле, чтобы справиться с ними, нужно всего лишь проявить логику, включить смекалку и ничего сложного не окажется.
Свою работу я захотела посвятить заданиям с параметрами, так как именно они вызывают у большинства учеников наибольшие затруднения. Мне самой нужно будет сдавать ЕГЭ, и поэтому, обращаясь к этой теме, я хотела бы облегчить и себе, и своим слушателям, тяжесть решения задач с параметрами.
Цель моей работы - научиться решать уравнения с параметрами и познакомить учеников с методами решения подобных заданий.
Я поставила перед собой следующие задачи:
1. Самой научиться решать уравнения с параметрами различных видов.
2. Познакомить учащихся с разными методами решения подобных уравнений.
3. Вызвать интерес учеников к дальнейшему изучению задач с параметрами.
В моей работе я рассмотрю следующие виды заданий с параметрами:
1) решение уравнений первой степени с одним неизвестным;
2) решение линейных уравнений с модулем;
3) решение квадратных уравнений.
уравнение параметр неизвестное модуль
1. Знакомство с параметрами
Для начала, стоило бы пояснить, что собой представляют уравнения с параметрами, которым посвящена моя работа. Итак, если уравнение (или неравенство), кроме неизвестных, содержит числа, обозначенные буквами, то оно называется параметрическим, а эти буквы – параметрами.
Если параметру, содержащемуся в уравнении (неравенстве), придать некоторое значение, то возможен один из двух следующих случаев:
1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные (т.е. без параметров);
2) получится условие, лишенное смысла.
В первом случае значение параметра считается допустимым, во втором – недопустимым.
Решить уравнение (неравенство), содержащее параметр, - это значит, для каждого допустимого значения параметра найти множество всех значений данного уравнения (неравенства).
К сожалению, не редко при решении примеров с параметрами многие ограничиваются тем, что составляют формулы, выражающие значения неизвестных через параметры. Например, при решении уравнения
Пример 1. Решить уравнение
Сразу видно, что при решении этого уравнения стоит рассмотреть следующие случаи:
1) a=1, тогда уравнение принимает вид
2) при а=-1 получаем
3) при
Ответ: при a=1 решений нет, при а=-1 х любое, при
Пример 2. Решить уравнение
Очевидно, что
Ответ: при b
Пример 3. При каких а уравнение
Сразу хочу обратить внимание на распространенную ошибку – считать данное уравнение квадратным. На самом деле это уравнение степени не выше второй! При а – 2=0, а = 2, уравнение вырождается в линейное имеет единственный корень х=1/4. Если же а
Ответ: при а=2, а=1, а=6.
1.1 Решение уравнений первой степени с одним неизвестным
Решить такое уравнение – это значит:
1) определить множество допустимых значений неизвестного и параметров;
2) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнений.
Простейшее уравнение первой степени с одним неизвестным имеет вид ах-b=0.
Если а=0, то при b=0 бесчисленное множество решений, а при b
Пример 1. Для каждого значения а решить уравнение
Это уравнение не является линейным уравнением (т.е. представляет собой дробь), но при х
Мы уже выявили допустимые значения икс (х
а-1-х=0
Из этого видно, что при х
Таким образом, при а
Ответ: при а<0 х=а-1; при
Пример 2. Решить уравнение
Допустимыми значениями k и x будут значения, при которых
Приведём уравнение к простейшему виду:
9х-3k=kx-12
(9 – k)x =3k-12 (2)
Найдём k, при которых изначальное уравнение не имеет смысла: