Смекни!
smekni.com

Логіка і множини (стр. 2 из 2)

(p(x) ∧(q(x) ∨r(x))) «((p(x) ∧q(x)) ∨(p(x) ∧r(x)))

Звідси слідує, що (p(x) ∧q(x)) ∨(p(x) ∧r(x)) істинно, так що x∈(P∩Q) ∪(P∩R). А це значить, що

(1) P∩(Q∪R) ⊆(P∩Q) ∪(P∩R).

Тепер припустимо, що x∈(P∩Q) ∪(P∩R). Тоді (p(x) ∧q(x)) ∨(p(x) ∧r(x)) істинно. З першого розподільного закону для логічних функцій слідує, що p(x) ∧(q(x) ∨r(x)) істинно, так що x∈P∩(Q∪R). Це дає

(2) (P∩Q) ∪(P∩R) ⊆P∩(Q∪R).

Потрібний результат слідує з (1) і (2).

6. Логіка квантифікаторів

Повернемось до прикладу"xє парне число". Обмежимо xмножиною цілих чисел Z . Tоді вислів "xє парне число" істинний лише для деяких xвZ. Звідси слідує, що вислів "деякіx∈Zпарні" істинний, якщо вислів "всіx∈Z непарні" хибний.

В загальному випадку розглянемо функцію вислів p(x) в якій змінна xналежить певній множині. Введемо наступні позначення для висловів

∀x, p(x) (для всіхx, p(x) істинний);

і

∃x, p(x) (для деякихx, p(x) істинний).

Символ ∀(для всіх) і ∃(для деяких) називаються відповідно універсальним квантифікатором і квантифікатором існування. Зауважимо, що змінна xне є суттєва, вона може бути замінена будь якою іншою, так що ∀x, p(x) і ∀y, p(y) означають одне й те ж саме.

(Теорема Лагранжа) Кожне натуральне число є сума квадратів чотирьох цілих чисел. Це можна записати як

∀n∈N, ∃a, b, c, d∈Z, n= a2 + b2 + c2 + d2.

(Гіпотеза Гольдбаха) Кожне парне число більше 2 є сума двох простих чисел. Це можна записати як

∀n∈N\ {1}, ∃p, qпрості, 2n= p+ q.

Ще невідомо, чи це дійсно так. Це одна з найцікавіших з ще не розв’язаних проблем математики.

Заперечення

Розглянемо заперечення висловів з квантифікаторами. Давайте скажемо, що всі люди дурні. Дехто з вас з цим не погодиться. Можна здогадатися, що запереченням вислову ∀x, p(x) буде вислів ∃x, p(x).Тепер будемо не так категоричними і скажемо, що дехто з вас дурень. Якщо і цього разу заперечите, то запереченням вислову∃x, p(x) буде ∀x, p(x). Отже, маємо формули аналогічні законам де Моргана для квантіфікаторів

∀x, p(x) «∃x, p(x)

∃x, p(x) «∀x, p(x).

Підсумовуючи сказане, заперечуючи вислів з кавантифікатрором ми змінюємо квантифікатор і заперечуємо функцію висловів. Застосовуючи це правило послідовно декілька раз одержимо заперечення більш складного вислову

спочатку як

Потім

Потім


і, нарешті,

Запереченням гіпотези Гольдбаха в термінах квантифікаторів буде

∃n∈N\ {1}, ∀p, qпрості числа, 2n¹p+ q.

Іншими словами, існує парне число більше 2, яке не є сумою двох простих чисел. Отже, щоб відкинути гіпотезу Гольдбаха досить знайти таке число. Це називається "привести контр приклад".


Література

1. Вища математика: Основні означення, приклади і задачі. У 2-х кн. / За ред. І.П.Васильченко. _ К: Либідь, 1994.- 280 ст.

2. Шкіль М.І. Вища математика: Підручник у 3-х кн./ Шкіль М.І., Колеснік Т.В., Котлова В.М. – К.: Либідь, 1994.

3. Вища математика: Основні означення, приклади і задачі. У 2-х кн. / За ред. Г.Л. Кулініча: Підручник К.: Либідь, 1994.

4. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - М.: Наука, 1985.

5. Карасев А.И., Аксютина Э.М., Савельева Т.И. Курс высшей математики для экономических вузов. М.: Высшая школа. ч. 1,2. 1990.

6. Пискунов Н.С. Дифференциальное и интегральное исчисление. - М.: Наука, 1988, т.1,2.

7. Ильин В.Н., Позняк З.Г. Аналитическая геометрия. М. :Наука, 1984.

8. Ильин В.Н., Позняк З.Г. Линейная алгебра. М.: Наука, 1989.

9. Бахвалов С.В. Аналитическая геометрия. - М.: Высшая школа, 1992.

10. Цубербиллер О.Н. Задачи по аналитической геометрии. М.: Высшая школа, 1984.