Смекни!
smekni.com

Кручение стержней (стр. 1 из 9)

ОГЛАВЛЕНИЕ

Введение

Глава 1. Кручение стержней имеющих в сечении правильный многоугольник

§1.1 Кручение призматических стержней

§1.2 Кручение стержней прямоугольного сечения

§1.3 Мембранная аналогия

§1.4 Кручение тонкостенных стержней открытого профиля

Глава 2. Кручение стержней имеющих в сечении круг и эллипс

§2.1 Кручение стержней круглого и эллиптического сечений

§2.2 Кручение тонкостенных труб

§2.3 Кручение круглых валов переменного диаметра

Глава 3. Кручение призматических и цилиндрических стержней

§3.1 Чистое кручение стержней постоянного сечения

§3.2 Чистое кручение круглых стержней (валов) переменного сечения

Глава 4. Задачи

Заключение

Литература

ВВЕДЕНИЕ

Данная выпускная квалификационная работа состоит из четырех глав. В первой главе излагается прямой, обратный и полуобратный методы, применяемые при решении задач о кручении стержня прямоугольного сечения. Исследованы приближенные методы решения задач о кручении более сложных сечений.

Вторая глава посвящена изучению кручения стержней в сечении имеющих форму круга или эллипса. Применяют метод перехода к полярным координатам.

В третьей главе исследуется кручение призматических и цилиндрических стержней, исследуются общие построения данной теории и их различия.

В четвертой главе изучают теоретическое применение к решению задач.

Глава 1. КРУЧЕНИЕ СТЕРЖНЕЙ, ИМЕЮЩИХ В СЕЧЕНИИ ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК

§1.1 Кручение призматических стержней

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений теории упругости совместно с заданными граничными условиями, не всегда возможен. Для многих задач удобно применять так называемые обратный и полуобратный методы. При пользовании обратным методом выясняют, каким граничным условиям соответствуют некоторые функции, удовлетворяющие дифференциальным уравнениям. Таким путем можно получить ряд полезных результатов. Полуобратный метод, впервые предложенный Сен-Венаном, состоит в том, что делают некоторые допущения в отношении напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых математических трудностей. Принимая те или иные допущения, мы, как правило, ограничиваем общность полученного решения; но обычно их можно формулировать таким образом, чтобы все же получить решение частных задач. Например, в рассматриваемой ниже задаче о кручении призматического стержня мы будем задаваться определенными функциями для перемещений и, v, w, сводя, таким образом, основные уравнения к одному дифференциальному уравнению. Но при таких допущениях мы можем найти решение задачи о кручении стержней только постоянного сечения; решения же для стержней, не являющихся призматическими, получить этим путем нельзя. Полуобратный метод является одним из самых эффективных методов решения задач теории упругости.

рис. 1

Предположим, что один конец стержня призматического сечения, длины L, закреплен в плоскости ху, а на другой конец действует пара, вектор-момент который направлен вдоль оси z (рис. 1). Мы полагаем, что закрепленный конец не может вращаться, но что оба конца могут свободно перемещаться друг относительно друга в направлении z. Под действием пары стержень будет закручиваться, причем образующие цилиндра будут превращаться в винтовые линии. Угол поворота любого поперечного сечения зависит от расстояния, на котором находится это сечение от закрепленного конца. При малой деформации можно считать, что угол закручивания

пропорционален расстоянию между сечением и закрепленным концом. Таким образом,

z, (1)

рис. 2

где

угол закручивания на единицу длины. Будем считать угол закручивания
малым. Рассмотрим сечение стержня, которое находится на расстоянии z от закрепленного конца. Точка Р с координатами x, y, z в результате деформации перемещается в точку Р’(x+u, y+v, z+w). На рисунке 2 показана точка Р’1, являющаяся проекцией Р’ на плоскость xy.

Предположим, что в плоскости xy точка Р перемещается в Р’1 при повороте на угол закручивания

, причем ОР
ОР’1= r. Если угол
мал, то cos
1 и sin
. Следовательно,

Подставляя значение

(1), получаем

(2)

таким оказывается закон изменения u и v. В отношении w не будем пока делать никаких допущений, кроме того, что w зависит только от x и y и не зависит от z . Следовательно, можно записать

(3)

где

- некоторая функция от x и y .Так как w определяет искажение (депланацию) торцевых сечений, то функцию
можно назвать функцией депланацией. Необходимо выяснить, будут ли отвечать принятые выражения для перемещений, вместе с неизвестной еще функцией
, напряженному состоянию, удовлетворяющему заданным граничным условиям. Эти условия в данном случае состоят в том, что на обоих торцах должны действовать, только крутящие моменты и что боковая поверхность стержня свободна от сил.

Пользуясь приведенными выше выражениями для перемещений, находим:

(4)

Из закона Гука следует:

(5)

Подставим эти значения в уравнения равновесия, которые будут выполняться, в случае, если функция

удовлетворяет уравнению

для всех точек поперечного сечения R стержня, здесь

- оператор Лапласа.

Обратимся к граничным условиям. Так как

на боковой поверхности стержня, то уравнений примет следующий вид:

на контуре S,

где S - контурная линия поперечного сечения стержня.

Покажем, далее, что на двух других граничных поверхностях, а именно, на торцах стержня, определяемых плоскостями z=0 и z=L, напряжение (5) сводятся к скручивающей паре, и результирующие силы отсутствуют. Результирующая сила в направлении x равна

; (8)

это выражение можно привести к виду

. (9)

При получении уравнения (9) были использованы соотношения

рис. 3

здесь принято

в соответствии с уравнением (6).

Пусть f является некоторой функцией x и y; тогда можно выписать равенства (рис. 3):

где f1 и f2 - значение функции f на правой и левой частях контура. Выполним интегрирование по y для контурной кривой в границах от y=yA до y=yB. Если мы будем вести интегрирование функции f по контуру в направлении против часовой стрелки, то для правой части контура приращение dy - положительно, а для левой - отрицательно. В результате каждая из величин f1dy и (- f2dy) окажется положительной, и, следовательно,

. (10)

Аналогично,

(11)

Пользуясь формулами (10) и (11), придадим выражению (9) вид:

. (12)

Будем считать положительными направления вдоль нормали N во внешнюю сторону и вдоль контура – против часовой стрелки; тогда согласно рис.3,б получим

(13)

Равенство (12) принимает вид

при этом выражение