Смекни!
smekni.com

Кручение стержней (стр. 8 из 9)

где

некоторое число.

Уравнения (110) имеют следующие два решения:

(111)

(112)

где,

функция Бесселя второго порядка действительного аргумента соответственно первого и второго рода;

функция Бесселя второго порядка мнимого аргумента соответственно первого и второго рода.

Напряжения определяют по формулам:

(113)

И

(114)

где J1, Y1, I1, K1 - функция Бесселя первого порядка.

В функциях Лежандра.

Дифференциальное уравнение кручения валов переменного сечения (103) в криволинейных, ортогональных, изотермических координатах имеет вид:

(115)

где

криволинейные, ортогональные, изотермические координаты в плоскости осевого сечения вала.

Координаты

в плоскости
(см. рис.19) связаны с координатами r и z соотношениями:

(116)

и обратно

Полагая

где

функция
, а
функция
, и подставляя в уравнение (115), получаем, учтя формулы (116), два уравнения:

(117)

где n- некоторое постоянное число.

Из первого уравнения (117), принимая

, находим:

(118)

Решение второго уравнения (117) ищем в форме:

(119)

где

Подставляя значение

во второе уравнение (117), приходим к уравнению Лежандра:

(120)

откуда

(121)

где

функции Лежандра первого рода, а при n – целом числе – полиномы Лежандра.

Первое решение уравнения (115) будет

(122)

Второе решение имеет вид:

(123)

где

функция Лежандра второго рода.

При n=0 и n=1 решения получаются непосредственно из второго уравнения (117):

при n=0

при n=1

Таким образом, решения (122) и (123) дополняются двумя значениями функции

:

(124)

При эллиптических координатах

, которые связаны с координатами r и z соотношениями:

(125)

Полагая

приходим к решению в форме:

(126)

где

Pn(…) - функция Лежандра первого рода;

Qn(…) – функция Лежандра второго рода.

Если переменить роли координат r и z, т.е. расположить полюса эллиптической системы координат не на оси вала Oz, а на оси Or, то связь между r, z и

будет

(127)

и решение (126) примет вид:

(128)

где

ГЛАВА 4. ЗАДАЧИ

1. Стержень эллиптического сечения

скручивается моментом Mz.

Исследовать напряженное состояние стержня.

Задаемся функцией напряжений в виде:

(a)

где A-неизвестный множитель.

Подставляя функцию Ф в уравнение (91), получаем:

Откуда

и функция напряжений

(б)

Напряжения определяем по формулам (90):

(в)

Эпюры напряжений приведены на рис.20. рис.20

Для определения пользуемся формулой (97).

Согласно формуле (б) площадь эллипса

где при x=y=0

По формуле (97)

Наибольшее напряжение в точке (0, b)

2. Стержень кругового сечения

скручивается моментом Mz.

Исследовать напряженное состояние стержня.

Для функции напряжений принимаем выражение

(a)

где A- неизвестный множитель.

Согласно уравнению (91)

Откуда

рис.21

и функция напряжений будет

(б)

Напряжения определяем согласно формулам (90):

(в)

Эпюры напряжений приведены на рис.21.

Согласно формуле (97)

Наибольшее напряжение

(г)

где

полярный момент сопротивления.

Все формулы настоящее задачи являются частным случаем формул задачи (85) при a=b, когда эллипс превращается в круг.

3. Задача Вебера (1921 г.)

Круглый стержень диаметром b с полукруглой выточкой радиуса a скручивается моментом Mz (рис.22).

Найти натяжное состояние стержня.

Уравнения контуров сечения в полярных координатах имеют вид:

(a)

Функция напряжений принимает в форме:

рис.22

(б)

где А - неизвестный множитель.

Функция Ф на контуре равна нулю.

В декартовых координатах при

функция напряжений

Согласно уравнению (91)

и функция напряжений будет

(в)

Касательные напряжения в полярных координатах, согласно рис.22, равны:

Дифференцируя функцию Ф, получаем:

(г)

Максимальное значение касательное напряжение принимает в точки контура, находящейся на дне выточки: