б1) Пусть
=0. Тогда из (2.4) выводится равенство (2.5)а из (2.5) получим
. Распишем (2.5): . Т.е. однозначно выражается через элемент , которых может быть р штук, и через элементы , , , , . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1).б2) Если
¹0, .Тогда получим опять равенство (2.5) и из него . Элементов всего р-1 штук. Т.к , то получаем что . Пусть . Умножив равенство (2.5) на , выражая и произведя замену на получим равенство . А т.к. и делаем вывод, что и выражаются через все остальные элементы матрицы. Поэтому количество матриц удовлетворяющих этим условиямб3) Если
¹0, и получаем (р-1)4×р2×(р+1) матриц удовлетворяющих этим условиям (рассуждения как вб4) Если
¹0, , и получаемб5) Пусть
¹0, , и . Из того, что , получаем . Пусть . Тогда преобразовывая (2.4) получаем, что однозначно выражается через и все остальные элементы.Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1) штук.
Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах б1-б5).
Значит формула (р-1)3р5(р+1) для случая 1) при условии (2.2) верна.
2) Пусть
, (количество их р-1), (количество высчитывается по формуле (1.5)) и (по р штук). Тогда из (2.1) получаем .Тогда количество таких матриц вычисляется по формуле
(р-1)3р4(р+1) (2.6)
Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что
, и .Но при этих условиях не учитываются матрицы вида
с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида с определителем обращающимся в нуль, количество которых нужно вычесть.Докажем, что количество матриц в обоих случаях одинаково:
а)
, и . Из (2.1) получаем равенство , , а из того что получаем что, например, элемент однозначно выражается через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).б)
, и . Из (2.1) получаем равенство , . А из можем однозначно выразить, например, элемент через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).3) Пусть
, , (количество их p-1), (количество высчитывается по формуле (1.5)) и (по р штук).Тогда количество таких матриц вычисляется по формуле
(р-1)[(р-1)2р(р+1)]×р×р×р (2.7)
Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3матриц над полем Zp
(р-1)3р3(р+1)(р2+р+1) (2.8)
3. Общая формула для подсчета обратимых матриц над полем Zp.
Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.
Например:
Для матриц порядка 4:
(р-1)4р6(р+1)(р2+р+1)(р3+р2+р+1).
Для матриц порядка 5:
(р-1)5р10(р+1)(р2+р+1)(р3+р2+р+1)( р4+р3+р2+р+1), и т.д.
Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так: