то решение x =
Замечание. Функции
Рис. 6.
Так как в силу настоящей теоремы эти функции непрерывны по переменным х0, у0 и равномерно непрерывны относительно tна всяком замкнутом конечном промежутке значений t, то, очевидно, эти функции непрерывны по совокупности своих аргументов при всех тех значениях этих аргументов, при которых они определены.
Теорема 4 может быть также сформулирована в следующей геометрической форме, которой мы в основном будем пользоваться в дальнейшем.
Теорема 4'. Пусть
М0 (х0, у0) и M1 (x1y1)
— две точки произвольной траектории L, соответствующие значениям t0 и t1 переменного t. Тогда для любого
Докажем лемму, непосредственно вытекающую из теоремы 4.
Лемма 9. Пусть К — замкнутое ограниченное множество, целиком лежащее в G. Всегда существует h0> 0 такое, что при любом t0 решение
x=
для любой точки М0 (х0, у0)
t0- h
Доказательство. Предположим, что лемма несправедлива, т. е. для любого h> 0 найдется такая точка М
M=M(t — t0, Mn)
при достаточно большом nопределено на сегменте [t0— h*, t0+ h*]. Hohn < h* при достаточно большом n(так как hn
10. Замена переменных
Предположим, что область определения Gсистемы (I) ограничена, и рассмотрим регулярное отображение этой области на некоторую область G* плоскости (и, v).
Пусть это отображение задается формулами
x=f(u, v), y = g(и, v)(Т)
или эквивалентными им формулами
x = f*(x,y), y=g*(x,y), (Т*)
где функции f, g, f*, g* являются функциями класса С2. Мы будем предполагать также, что G* — ограниченная область; для этого необходимо и достаточно, чтобы функции f* и g* были ограниченными в области G.
Переменные и и vможно рассматривать, как известно, не только как декартовы координаты на плоскости (и, v), но и как криволинейные координаты в области Gплоскости (х, у). Тогда (Т) и (Т*) являются формулами замены переменных или преобразования координат.
Пусть после перехода к координатам и, vсистема (I) принимает вид
При этом мы имеем, очевидно,
V(u, v) =
Таким образом, при переходе к новым координатам и, vвектор т с координатами Р (х, у), Q (х, у) преобразуется в вектор т* с координатами U (и, v), V (и, и), связанными с Р (х, у), Q (х, у) выражениями (32).
При отображении (Т) всякая траектория системы (I)
x =
и, обратно, при отображении (Т*) траектории системы (31) переходят в траектории системы (I). Нетрудно убедиться непосредственно, что пара функций (33) является решением системы (31).
В дальнейшем мы будем рассматривать не только регулярные преобразования координат. В частности, мы часто будем пользоваться переходом к полярной системе координат, который, очевидно, не является регулярным преобразованием координат.
Действительно, при преобразовании к полярным координатам
во-первых нарушается взаимная однозначность, а во-вторых функциональный детерминант
11. Дифференциальное уравнение, соответствующее динамической системе
Если разделить одно уравнение системы (I) на другое, то мы получим либо дифференциальное уравнение
либо дифференциальное уравнение
Рассмотрим сначала уравнение (II). Пусть