БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра информатики
РЕФЕРАТ
на тему:
«Построение эйлерова цикла. Алгоритм форда и Уоршелла»
МИНСК, 2008
1.Эйлеровы цепи и циклы
Рассматриваемая задача является одной из самых старейших в теории графов. В городе Кенигсберге (ныне Калининград) имелось семь мостов, соединяющих два берега реки Преголь, и два основа на ней друг с другом (рис. 1а). Требуется, начав путешествие из одной точки города пройти по всем мостам по одному разу и вернуться в исходную точку.
а) б)
Рис. 1.
Если поставить в соответствие мостам ребра, а участкам суши — вершины, то получится граф (точнее псевдограф), в котором надо найти простой цикл, проходящий через все ребра. В общем виде эта задача была решена Эйлером в 1736 г.
Определение 1.Эйлеровой цепью в неориентированном графе G называется простая цепь, содержащая все ребра графа G. Эйлеровым циклом называется замкнутая Эйлерова цепь. Аналогично, эйлеров путь в орграфе G — это простой путь, содержащий все дуги графа G. Эйлеров контур в орграфе G — это замкнутый эйлеров путь. Граф, в котором существует эйлеров цикл, называется эйлеровым.
Простой критерий существования эйлерова цикла в связном графе дается следующей теоремой.
Теорема 1. (Эйлер) Эйлеров цикл в связном неориентированном графе G(X, E) существует только тогда, когда все его вершины имеют четную степень.
Доказательство. Необходимость. Пусть m - эйлеров цикл в связном графе G, x — произвольная вершина этого графа. Через вершину x эйлеров цикл проходит некоторое количество k (k³1) раз, причем каждое прохождение, очевидно, включает два ребра, и степень этой вершины равна 2k, т.е. четна, так как x выбрана произвольно, то все вершины в графе G имеют четную степень.
Достаточность. Воспользуемся индукцией по числу m ребер графа. Эйлеровы циклы для обычных (не псевдо) графов можно построить начиная с m=3.Легко проверить, что единственный граф с m=3, имеющий все вершины с четными степенями, есть граф K3 (рис. 2). Существование эйлерова цикла в нем очевидно. Таким образом, для m=3 достаточность условий доказываемой теоремы имеет место. Пусть теперь граф G имеет m>3 ребер, и пусть утверждение справедливо для всех связных графов, имеющих меньше, чем m ребер. Зафиксируем произвольную вершину a графа G и будем искать простой цикл, идущий из a в a. Пусть m(a, x) — простая цепь, идущая из a в некоторую вершину x. Если x ¹a, то цепь m можно продолжить из вершины x в некотором направлении. Через некоторое число таких продолжений мы придем в вершину zÎX, из которой нельзя продлить полученную простую цепь. Легко видеть, что z = a так как из всех остальных вершин цепь может выйти (четные степени!); a в a она начиналась. Таким образом, нами построен цикл m, идущий из a в a. Предположим, что построенный простой цикл не содержит всех ребер графа G. Удалим ребра, входящие в цикл m, из графа G и рассмотрим полученный граф
является эйлеровым циклом в графе G. Теорема доказана.
Замечание. Очевидно, что приведенное доказательство будет верно и для псевдографов, содержащих петли и кратные ребра (см. рис. 1,а).
Таким образом, задача о кенигсбергских мостах не имеет решения, так как соответствующий граф (см. рис. 1,б) не имеет эйлерова цикла из-за нечетности степеней все вершин.
Совершенно также, как теорема 1, могут быть доказаны следующие два утверждения.
Теорема 2. Связный неориентированный граф G обладает эйлеровой цепью тогда и только тогда, когда число вершин нечетной степени в нем равно 0 или 2, причем если это число равно нулю, то эйлерова цепь будет являться и циклом.
Теорема 3. Сильно связный орграф G(X, E) обладает эйлеровым контуром тогда и только тогда, когда для любой вершины xÎX выполняется
Можно также обобщить задачу, которую решал Эйлер следующим образом. Будем говорить что множество не пересекающихся по ребрам простых цепей
Если граф G — эйлеров, то очевидно, что это число равно 1. Пусть теперь G не является эйлеровым графом. Обозначим через k число его вершин нечетной степени. По теореме … k четно. Очевидно, что каждая вершина нечетной степени должна быть концом хотя бы одной из покрывающих G цепей mi. Следовательно, таких цепей будет не менее чем k/2. С другой стороны, таким количеством цепей граф G покрыть можно. Чтобы убедиться в этом, расширим G до нового графа
Теорема 4. Пусть G — связный граф с k>0 вершинами нечетной степени. Тогда минимальное число непересекающихся по ребрам простых цепей, покрывающих G, равно k/2.
Для начала отметим, что теорема 1 также дает метод построения эйлерова цикла. Здесь мы рассмотрим несколько иной алгоритм.
Пусть G(X, E) — связный неорентированный граф, не имеющий вершин нечетной степени. Назовем мостом такое ребро, удаление которого из связного графа разбивает этот граф на две компоненты связности, имеющие хотя бы по одному ребру.
1°. Пусть a — произвольная вершина графа G. Возьмем любое ребро e1=(a, x1) , инцидентное вершине a, и положим m = {e1}.
2°. Рассмотрим подграф G1(X, E\m1). Возьмем в качестве e2 ребро, инцидентное вершине x1 и неинцидентное вершине a, которое также не является мостом в подграфе G1 (если такое ребро e2 существует!). Получим простую цепь m2 = {e1, e2}.
3°. Пусть e2 = (x1, x2), x¹a. Рассмотрим подграф G2(X, E\m2) и удалим из него все изолированные вершины. В полученном подграфе
m3 = {e1, e2, e3}.
Продолжая указанный процесс, мы через конечное число шагов получим эйлеров цикл m = {e1, e2, …, en}, где n — число ребер графа G(X, E).
Предположим, что уже построена простая цепь mk-1 = {e1, e2, …, ek-1} для k³2 методом, указанным в алгоритме. Пусть ek-1 = (xk-2, xk-1) и xk-1¹a. Рассмотрим подграф