Смекни!
smekni.com

Философия математики (стр. 8 из 10)

Французские математики в рассматриваемый период преимущественно группировались вокруг знаменитой Политехнической школы. Последняя была открыта 1794 году и очень скоро достигла исключительных успехов. Фактически почти все, что был сделано во Франции в первые десятилетия XIX века в области математики, физики и химии, идет из Политехнической школы, пишет Ф. Клейн. Преподавателями или воспитанниками школы были такие выдающиеся исследователи, как Монж, Пуассон, Фурье, Коши, Понселе, Кориолис и другие.

Детище революции - Политехническая школа - как бы стремилась распространить пламя революции на область технического и научного творчества.

Одним из фундаментов и фактически руководителем Политехнической школы до последних дней школы был Гаспар Монж. Творчество этого математика сможет служить яркой иллюстрацией того влияния, которое общественные идеалы прогрессивных французских мыслителей XVIII века оказывали на развитие математических знаний. Важную роль ученый отводил созданному им новому разделу геометрической науки - начертательной геометрии. Как преподаватель военной школы в Мезьере, а затем в Политехнической школе Монж методически проработал и передал многочисленной аудитории курс начертательной геометрии, стимулируя дальнейшее развитие математических знаний, непосредственно связанных с конкретными практическими задачами. Многие его ученики восприняли у Монжа не только математические знания, но и мировоззренческие установки учителя.

Одним из учеников Монжа был Л.Н. Карно, которого часто называют "генералом революции" и "генералом математики". Эти почетные титулы он получил заслуженно. В области математической деятельности он известен как автор работ по прикладной механике. Общие мировоззренческие и методологические установки Карно в целом находятся в русле основных идей материалистической философии французского просвещения. Оба соображения лежавшие в основе Концепции Карно (неопределенность дифференциалов и компенсация погрешностей) не имеют убедительного обоснования. Внутренняя его позиция двойственно противоречива. Но при этих недостатках работа Карно "Размышление о метафизике исчисления бесконечно малых", была важным, интересным исследованием. Она отличается от предшествующих сочинений на данную тему четности поставленной проблемы ясность ее определения, здесь предпринимаются попытки строго дедуктивного, систематического изложения основных понятий и принципов анализа. Карно как бы подводит итог исследования по обоснованию анализа и отчасти подготавливает почву для той реформы анализа, которую в XIX веке осуществил Коши.

Строгое обоснование дифференциального и интегрального исчисления Коши развивает в лекциях и сочинениях в 20-е годы XIX века. Осуществляя построение анализа на базе теории пределов, Коши не только стремится завоевать признание бесконечно малых и оправдать их применение. Он дает научное истолкование алгоритму их использования. В мировоззрении этого выдающегося математика не религиозные выравнивания составляли основу научного творчества. Такой основой были стихийно-материалистические принципы, закрепленные под влиянием Монжа. Однако они сочетались с религиозной убежденностью, выработанной под воздействием той среды, в которой воспитывался и жил Коши.

В конечном итоге под давлением объективных потребностей математического познания идея актуальной бесконечности со временем, завоевала признание. Она получила четкую формулировку в работах современника Коши - талантливого чешского ученого Больцано. Он был знаком с гегелевской трактовкой и выступил с ее критикой "Я не допускаю только того, что бы философу был известен какой-либо предмет, которому он был бы в праве приписать свою бесконечность, как качество, не обнаружив раньше в этом предмете в каком-либо отношении бесконечной величины или бесконечного количества", - писал Больцано.

На примере критических замечаний Больцано видно, что у математиков вызывали отрицательное отношение резкие гегелевские суждения об их науки, они выступили с осуждением обособления математически выразимого количества от качества, которое действительно имеет место у Гегеля. Вместе с тем у Больцано имеет место и определенное недопонимание истинного смысла гегелевской трактовки понятия бесконечного, поскольку призыв великого философа не ограничивался выявленным количественным аспектом бесконечного, был актуальным, важным для развития математики.

Известно, что неевклидова геометрия была почти одновременно открыта несколькими учеными. Это были Н.И. Лобачевский, К.Ф. Гаусс и Иоанн Больаи. Однако Н.И. Лобачевский по праву заслужил славу творца неевклидовой геометрии.

Создание новой геометрии относится к числу тех открытий, значение которых выходит за пределы математики. В сложном процессе формирования этого научного результата, необходимо отметить только один аспект: ту мировоззренческую основу, исходя из которой такие математики, как Гаусс и Лобачевский пришли к его открытию.

Творчество Гаусса знаменует переход к новому этапу развития математических знаний. Мировоззрение этого математика противоречиво. Оно включает такие принципы как убежденность в объективном существовании действительности, признание практической ценности науки. Вместе с тем в понимании некоторых вопросов математического познания, Гаусс находился под влиянием кантовских воззрений. Гаусс в принципе мог опубликовать ряд основоположений новой геометрии раньше Н.И. Лобачевского, но он этого не сделал. Открытие неевклидовой геометрии явно противоречило официально принятым и все более широко распространявшимся в то время в ученом мире Германии мировоззренческим и методологическим установкам Канта. Кроме того, данное противоречие имело место и в пределах мировоззрения самого ученого. Для него разработка неевклидовой геометрии - это разрыв с усвоенными ранее фундаментальными представлениями о природе математике. Не удивительно, что она сопровождалась сомнениями, неуверенностью, а подчас и нежеланием выступить с пропагандой новых идей.

Н.И. Лобачевский подошел к открытию неевклидовой геометрии существенно иных философских позиций по сравнению с Гауссом. Ряд исследований специально посвященных изучению мировоззрения Лобачевского, показывают, что этот великий математик был ярким представителем материализма в науке. Важно подчеркнуть, что его материалистическое мировоззрение не является каким-то эпизодическим явлением, а продолжением и развитием материалистических традиций в русской математике, естественным следствием той идейной борьбы, которую русские математики проводили против различных форм идеализма, в частности кантианства.

Если у Гаусса мировоззренческие и методологические установки были тормозом на пути развертывания исследований по неевклидовой геометрии, то мировоззрение и методология Н.И. Лобачевского открывали для них широкий простор. Можно сделать вывод, что философской основой деятельности математиков был материализм. Именно на этой основе были получены наиболее выдающиеся открытия. Конечно, степень развития и осознанности материалистических принципов существенно видоизменялись. Признание объективного существования в действительности, первичность материального бытия по отношению к сознанию сочетаются с религиозностью, с определенными уступками идеализма. Особенно в среде немецких математиков все более широкое признание получает кантианство, что нашло отчетливое выражение в деятельности Гаусса. Таким образом, если в развитии математики в первые десятилетия ХIХ века и прослеживается влияние немецкой философии, то оно исходило не от Гегеля, а именно от Канта.

Чем объяснить, что Кант, а не кто-то из последующих представителей немецкой классической философии, стал наиболее популярным среди математиков?

Философия математики Канта выглядела более приемлемой для математиков того времени. Она позволяла отстоять правомерность математики как системы всеобщих и необходимых истин, что было весьма актуальной проблемой в связи с разрушительной деятельностью Юма. Кант не доводит свою философию математики до таких конкретных выводов, которые бы резко расходились с общепринятыми математическими положениями. Если у Гегеля выяснение различий между философией и математикой служит скорее разъединению этих наук, то кантовский анализ способствовал их сближению. Раскрывая специфику философского знания, Кант постоянно указывает на возможность или невозможность применения в математике выделенных особенностей философии.

В целом философия математики Канта, если её рассматривать не в соотношении с концепцией Гегеля, а применительно к реальному историческому процессу развития математических знаний, имело двойственный характер. С одной стороны как порождение критической философии она понесла ощутимый удар по догматическим воззрениям на природу математики, способствовало повышению уровня строгости математических исследований, обратила внимание на необходимость развивать геометрическое направление с другой стороны, априоризм сдерживал творческое развитие математики, в чём можно было убедиться на примере деятельности Гаусса, отрицательное влияние на её прогресс оказывали идеалистические установки кантовской системы, в связи с чем актуальной задачей была критическая переработка этой системы. В связи с тем, что кантовская философия математики выступает логическим следствием его философской системы, критика не могла ограничиваться только областью философских проблем математики, а должна была охватить исходные философские принципы. Ни Фихте, ни Шеллинг, ни Гегель не справились с этой задачей, поскольку их критические замечания не затрагивали идеалистических устоев учения Канта.