В том, что обоснование приняло именно форму доказательства, а не остановилось на эмпирической проверке, решающим является появление новой, мировоззренческой функции науки. Фалес и его последователи воспринимают математические достижения предшественников, прежде всего для удовлетворения технических потребностей, но наука для них - нечто большее, чем аппарат для решения производственных задач. Отдельные, наиболее абстрактные элементы математики вплетаются в натурфилософскую систему, и здесь выполняют роль антипода мифологическим и религиозным верованиям. Эмпирическая подтверждаемость для элементов философской системы была недостаточной в силу общности их характера и скудности подтверждающих их факторов. Математические знания же к тому времени достигли такого уровня развития, что между отдельными положениями можно было установить логические связи. Такая форма обоснований оказалась объективно приемлемой для математических положений.
Появление математики как систематической науки оказало в свою очередь громадное влияние на философское мышление, которое оказалось в некотором смысле подчиненным математике. "Математика появилась как знание совершенно особой природы, достоверность которого не вызывает сомнения, исходные посылки которого ясны, а выводы совершенно непреложны ", - пишет Е.А. Беляев.
На примере милетской школы можно лишь убедиться в активном влиянии мировоззрения на процесс математического познания только при радикальном изменении социально-экономических условий жизни общества. Однако остаются открытыми вопросы о том влияет ли изменение философской основы жизни общества на развитие математики, зависит ли математическое познание от изменения идеологической направленности мировоззрения, имеет ли место обратное воздействие математических знаний на философские идеи. Можно попытаться ответить на поставленные вопросы, обратившись к деятельности пифагорейской школы.
Пифагореизм как направление духовной жизни существовал на протяжении всей истории Древней Греции, начиная с VI века до н.э. и прошёл в своём развитии ряд этапов. Основоположником школы был Пифагор Самосский (около 580 - 500 до н. э).
В пифагореизме выделяют две составляющие: практическую ("пифагорейский образ жизни ") и теоретическую (определённая совокупность учений). В религиозном учении пифагорейцев наиболее важной считалось обрядовая сторона, затем имелось в виду создать определённое душевное состояние и лишь, потом по значимости шли верования, в трактовке которых допускались разные варианты. По сравнению с другими религиозными течениями у пифагорейцев было специфическое представления о природе и судьбе души. Душа - существо божественное, она заключена в тело в наказание за прегрешения. Высшая цель жизни - освободить душу из телесной темницы, не допустить в другое тело, которое якобы совершается после смерти. Путем для достижения этой цели является выполнение определенного морального кодекса, "пифагорейский образ жизни". В многочисленной системе предписаний, регламентировавших почти каждый шаг жизни, видное место отводилось занятиям музыкой и полученными исследованиями.
Теоретическая сторона пифагореизма тесно связана с практической. В теоретических изысканиях пифагорейцы видели лучшее средство высвобождения души из круга рождений, а их результаты стремились использовать для рационального обоснования предполагаемой доктрины. Вероятно, в деятельности Пифагора и его ближайших учеников научные положения были перемешены с мистикой, религиозными и мифологическими представлениями. Вся эта "мудрость" излагалась в качестве изречений оракула, которым придавался скрытый смысл божественного откровения.
Пифагор рассматривал число, количественную определённость, как сущность вещей. Основной тезис пифагореизма состоит в том, что "всё есть число".
Согласно Аристотелю, Пифагор пришёл к понятию числа как универсальной основы всех вещей через изучение музыки. Он случайно обнаружил, что любое различие в звучании определяется числовым соотношением. Велико было восхищение, вызванное этим открытием. Однако вскоре философия превратилась у пифагорейцев в мистику чисел и геометрических фигур. Убежденье в истинности того или иного убеждения о мире достигалось сведением его к числовой гармонии. Пифагорейцы искали различные аналоги, числовые и геометрические соответствия в окружающем мире, надеясь найти в них разгадку самой природы вещей. Мысли о случайности таких совпадений ещё не возникало.
Если сравнивать математические исследования ранней пифагорейской и милетской школы, то можно выявить ряд существенных различий. Так, математические объекты рассматривались пифагорейцами как первосущность мира, то есть радикально изменилась само понимание природы математических объектов, кроме того, математика превращена пифагорейцами в составляющую религии, в средство очищения души, достижения бессмертия. И, наконец, пифагорейцы ограничивают область математических объектов наиболее абстрактными типами элементов и сознательно игнорируют положение математики для решения производственных задач. Пифагор, скорее всего, пользовался достижениями милетской школы, так как у него, как и у Фалеса, обнаруживаются основные признаки умственной деятельности, отличающиеся от догреческой эпохи; однако математическая деятельность этих школ носила различный характер.
Что касается природы самой математической закономерности, истоков её обусловленной истинности, то ранние пифагорейцы, скорее всего не задумывались над этим вопросом. У Платона, однако, мы находим уже некоторую теорию на этот счёт.
Сочинение Платона (427-347 гг. до н. э) - уникальное явление в отношении выделения философских концепций. Это высоко художественное, выхватывающее описание самого процесса становления, концепций, с сомнениями и не уверенностью, подчас с безрезультатными попытками решения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т.п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.
Математические истины для Платона врожденны, они представляют собой впечатление об истине самой по себе, которые душа получила пребывая в более совершённом мире, в мире идей. Математическое познание есть по этому просто воспоминание, оно требует ни опыта, ни наблюдения природы, а лишь ведения разума.
Математик, согласно Платону, изучает особые идеальные сущности, в отличие от сущностей, данных в опыте, эмпирических. "Когда геометры - говорит Платон, - пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертёж, а на те фигуры, подобием которых он служит. Выводы свои они делают для четырёхугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили". Геометрические фигуры сами по себе (в отличие от чертежей) можно видеть только "мысленным взором".
В этих рассуждениях Платоном впервые был поставлен вопрос о специфике объектов изучаемых математикой, который является одним из основных и в современной философии математики.
Наряду с пифагорейской философией существовала, хотя и в недостаточно выраженной форме, другая, более реалистическая философия математики, идущая от атомизма Левкиппа и Демокрита. Известно, что Демокрит отрицал возможность геометрических построений в пустоте: геометрические фигуры были для него не умозрительными сущностями, а прежде всего материальными телами, состоящими из атомов. Демокрит не допускал бесконечной делимости отрезка: по его мнению, отрезок состоит из большого числа далее неделимых частей. Данная позиция отчасти диктовалась общей установкой атомизма, но главное было в том, что допущение бесконечной делимости приводило к многочисленным парадоксам. Однако и допущение, что отрезки состоят из неделимых частей, приводило к противоречиям. В частности отсюда следовало, что неизмеримых величин не существует.
Математически атомизм появился скорее как частная эвристическая идея в геометрии, чем как особый взгляд на природу математики в целом. Однако, он неявно содержал в себе определённую антитезу пифагореизму. Если для пифагорейцев математические объекты (числа) составляли основу мира в антологическом смысле и основу его понимания, то в атомистической эвристике математические закономерности выступают уже как вторичные по отношению к атомам как первосущностям. Физическое здесь логически предшествует математическому и определяет свойства математических объектов. Пифагорейцы были правы, возражая против превращения математики в физику, настаивал на частоте математического метода, а так же и на идеализации бесконечной делимости геометрических величин. Система евклидовой математики не могла быть построена без такой идеализации. Но математический атомизм, тем не менее, содержал в зародыше будущую, более эмпирическую философию математики, которая неизбежно должна была выйти на сцену в связи с ростом влияния естественных наук.
Первый наиболее сильный удар по философии пифагореизма был нанесен открытием несоизмеримых отрезков. Это подрывало не только гармонию между геометрией и арифметикой, которая была для пифагорейцев сама собой разумеющейся, но и их идеологию в целом. В связи с кризисом пифагорейской философии математики необходимо так же упомянуть об апориях Зенона - нескольких рассуждениях, которые будучи (по крайней мере, по видимости) строгими, вместе с тем ставят под сомнения некоторые очевидные факторы, в частности время и движения. Главная ошибка в этих рассуждениях в неправильном использовании понятий.